1
|
Chaúque BJM, da Silva TCB, Rott EB, Rott FB, Leite APMC, Benitez GB, Neuana NF, Goldim JR, Rott MB, Zanette RA. Effectiveness of phytoproducts against pathogenic free-living amoebae - A scoping and critical review paving the way toward plant-based pharmaceuticals. Fitoterapia 2025; 182:106404. [PMID: 39922391 DOI: 10.1016/j.fitote.2025.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Infections caused by free-living amoebae (FLA) have increased worldwide and are expected to worsen. The lack of drugs that are effective (especially against cysts), affordable, and safe to treat these infections exacerbates the concern. Plants present a promising source of bioactive compounds for developing effective drugs; however, the scientific literature on this topic has yet to be adequately synthesized. This work provides a critical scoping review summarizing the amoebicidal performance of plant-derived products and their potential for developing effective drugs to treat FLA infections. Out of 5889 articles retrieved from multiple databases, 119 articles were selected, from which data on 180 plant species belonging to 127 genera and 62 families were extracted. The extracts, essential oils, and compounds from these plants exhibited a diverse range of potency against cysts and trophozoites. Among the compounds studied, periglaucine A, kolavenic acid, and (+)-elatol are promising cysticidal drug candidates due to their high potency, as well as their known low toxicity to non-target cells. Tovophillin A, gartinin, 8-deoxygartinin, garcinone E, 9-hydroxycalabaxanthone, γ-mangostin, and borneol also exhibit high cysticidal potency, but their selectivity profile is unknown. Resveratrol, rosmarinic acid, β-amyrin, and vanillic acid stand out for their high potency against trophozoites and low toxicity to mammalian cells. Another group of compounds with similarly high trophocidal potency includes (-)-epicatechin, (-)-epigallocatechin, apigenin, costunolide, demethoxycurcumin, kaempferol, methyl-β-orcinolcarboxylate, sakuraetin, (+)-elatol, debromolaurinterol, luteolin, (-)-rogiolol, cystomexicone B, epigallocatechin gallate, quercetin, and α-bisabolol. These compounds are priority candidates for further studies on in vivo efficacy, safety, pharmacokinetics, and pharmacodynamics.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique.
| | - Thaisla Cristiane Borella da Silva
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Felipe Brittes Rott
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | - Neuana Fernando Neuana
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique; Department of Mechanical and Materials Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - José Roberto Goldim
- Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil.
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Jiao X, Jin Q, Zhu P, Tan Z, Li L, Liu L. Clerodendranthus spicatus: a comprehensive review of the chemical constituents, pharmacology, quality control and clinical applications. Front Pharmacol 2025; 16:1452797. [PMID: 40183086 PMCID: PMC11966054 DOI: 10.3389/fphar.2025.1452797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Clerodendranthus spicatus (CS), is an herbaceous perennial belonging to the family Lamiaceae. The herb is extensively employed in traditional Chinese medicine for the mitigation of nephritis, cystitis, kidney stones, urological tract stones, gout, and other urinary conditions. Numerous research studies have been conducted in the past to explore the traditional medicinal value, phytochemical composition, pharmacological effects, and quality control measures associated with this plant. This has motivated us to systematically search various online databases such as Google Scholar, PubMed, Science Direct, Elsevier, CNKI, Scopus, Embase, and Web of Science using specific keywords to get the most recent research information findings related to this plant. Phytochemical investigations have identified that this plant predominantly contains flavonoids, terpenoids, phenylpropanoids, and volatile oil compounds. Certain constituents have been employed as markers in quality assessment research, and some were recognized as bioactive agents in the management of specific ailments. These components have demonstrated notable effectiveness in combating bacterial infections, reducing inflammation, providing antioxidant properties, managing hyperuricemia, and offering renal protection. Notably, clinical trials have confirmed its remarkable efficacy in treating urinary inflammation and stones. We acquired recent research findings concerning CS in the fields of phytochemistry, pharmacology, quality control, and clinical applications via online search. These findings have been summarized and analysed to offer a valuable reference for further comprehensive research, development, and utilization of CS.
Collapse
Affiliation(s)
- Xingmeng Jiao
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qiong Jin
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Peifeng Zhu
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhuomin Tan
- College of Pharmacy, Kunming Medical University, Kunming, China
| | - Li Li
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Liu
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Prokhorov Y, Pérez-Robles JF, Sampieri-Moran JM, García-Casillas PE, Paul S, García HS, Luna-Bárcenas G. Nanoemulsions of betulinic acid stabilized with modified phosphatidylcholine increase the stability of the nanosystems and the drug's bioavailability. Colloids Surf B Biointerfaces 2024; 245:114291. [PMID: 39368424 DOI: 10.1016/j.colsurfb.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Betulinic acid (BA) is a natural compound with significant potential for treating various diseases, including cancer and AIDS, and possesses additional anti-inflammatory and antibacterial properties. However, its clinical application is limited because of its low solubility in water, which impairs its distribution within the body. To overcome this challenge, nanoemulsions have been developed to improve the bioavailability of such poorly soluble drugs. This study investigated modified phosphatidylcholine (PC), where some fatty acids were replaced with conjugated linoleic acid (CLA) to stabilize BA nanoemulsions. The modified PC was used to prepare nanoemulsions with droplet sizes of up to 45 nanometers. These nanoemulsions maintained stability for 60 days at room temperature (25°C±2°C) and under refrigeration (5°C±1°C), with no signs of instability. Nanoemulsions stabilized with CLA-modified PC achieved a higher drug encapsulation rate (93.5±4.3 %) than those using natural PC (82.8±4.2 %). In an in vivo model, both nanoemulsion formulations significantly increased BA absorption, with CLA-modified PC enhancing absorption by 21.3±1.3 times and natural PC by 20±2.3 times compared to the free drug. This suggests that nanoemulsions with modified PC could improve the stability and efficacy of BA in clinical applications.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico
| | - Laura R Ochoa-Rodríguez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Yevgen Prokhorov
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Juan Francisco Pérez-Robles
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico
| | - Perla Elvia García-Casillas
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Coahuila 25294, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., San Pablo, Querétaro CP 76130, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico.
| |
Collapse
|
4
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
5
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
6
|
Ullah S, Rahman W, Ullah F, Ullah A, Ahmad G, Ijaz M, Ullah H, Zheng Z, Gao T. AVPCD: a plant-derived medicine database of antiviral phytochemicals for cancer, Covid-19, malaria and HIV. Database (Oxford) 2023; 2023:baad056. [PMID: 37594855 PMCID: PMC10437090 DOI: 10.1093/database/baad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Serious illnesses caused by viruses are becoming the world's most critical public health issues and lead millions of deaths each year in the world. Thousands of studies confirmed that the plant-derived medicines could play positive therapeutic effects on the patients with viral diseases. Since thousands of antiviral phytochemicals have been identified as lifesaving drugs in medical research, a comprehensive database is highly desirable to integrate the medicinal plants with their different medicinal properties. Therefore, we provided a friendly antiviral phytochemical database AVPCD covering 2537 antiviral phytochemicals from 383 medicinal compounds and 319 different families with annotation of their scientific, family and common names, along with the parts used, disease information, active compounds, links of relevant articles for COVID-19, cancer, HIV and malaria. Furthermore, each compound in AVPCD was annotated with its 2D and 3D structure, molecular formula, molecular weight, isomeric SMILES, InChI, InChI Key and IUPAC name and 21 other properties. Each compound was annotated with more than 20 properties. Specifically, a scoring method was designed to measure the confidence of each phytochemical for the viral diseases. In addition, we constructed a user-friendly platform with several powerful modules for searching and browsing the details of all phytochemicals. We believe this database will facilitate global researchers, drug developers and health practitioners in obtaining useful information against viral diseases.
Collapse
Affiliation(s)
- Shahid Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Wajeeha Rahman
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Farhan Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Anees Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Gulzar Ahmad
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Muhammad Ijaz
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Hameed Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Zilong Zheng
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Tianshun Gao
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
7
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
8
|
Sevik Kilicaslan O, Cretton S, Hausmann E, Quirós-Guerrero L, Karimou S, Kaiser M, Mäser P, Christen P, Cuendet M. Antiprotozoal activity of natural products from Nigerien plants used in folk medicine. Front Pharmacol 2023; 14:1190241. [PMID: 37426806 PMCID: PMC10326435 DOI: 10.3389/fphar.2023.1190241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
In the course of the screening of plants from Niger for antiprotozoal activity, the methanol extract of Cassia sieberiana, and the dichloromethane extracts of Ziziphus mauritiana and Sesamun alatum were found to be active against protozoan parasites, namely Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and/or Plasmodium falciparum. Myricitrin (1), quercitrin (2) and 1-palmitoyl-lysolecithin (3) were isolated from C. sieberiana. From Z. mauritiana, the three triterpene derivatives 13, 15, and 16 are described here for the first time. Their chemical structures were determined by 1D and 2D NMR experiments, UV, IR and HRESIMS data. The absolute configurations were assigned via comparison of the experimental and calculated ECD spectra. In addition, eight known cyclopeptide alkaloids (4, 5, 7-12), and five known triterpenoids (6, 14, 17-19) were isolated. The antiprotozoal activity of the isolated compounds, as well as of eleven quinone derivatives (20-30) previously isolated from S. alatum was determined in vitro. The cytotoxicity in L6 rat myoblast cells was also evaluated. Compound 18 showed the highest antiplasmodial activity (IC50 = 0.2 µm) and compound 24 inhibited T. b. rhodesiense with an IC50 value of 0.007 µM. However, it also displayed significant cytotoxicity in L6 cells (IC50 = 0.4 µm).
Collapse
Affiliation(s)
- Ozlem Sevik Kilicaslan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sylvian Cretton
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Estelle Hausmann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Luis Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Philippe Christen
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization. Molecules 2023; 28:molecules28041725. [PMID: 36838713 PMCID: PMC9964887 DOI: 10.3390/molecules28041725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer stemness is the process by which cancer cells acquire chemoresistance and self-renewal in the tumor microenvironment. Glucose-regulated protein 78 (GRP78) is a biomarker for gastric cancer and is involved in cancer stemness. By inducing cancer stemness in various types of cancer, the polarization of macrophages into tumor-associated macrophages (TAMs) controls tumor progression. Betulinic acid (BA) is a bioactive natural compound with anticancer properties. However, whether GRP78 regulates TAM-mediated cancer stemness in the tumor microenvironment and whether BA inhibits GRP78-mediated cancer stemness in gastric cancer remain unknown. In this study, we investigated the role of GRP78 in gastric cancer stemness in a tumor microenvironment regulated by BA. The results indicated that BA inhibited not only GRP78-mediated stemness-related protein expression and GRP78-TGF-β-mediated macrophage polarization into TAMs, but also TAM-mediated cancer stemness. Therefore, BA is a promising candidate for clinical application in combination-chemotherapy targeting cancer stemness.
Collapse
|
10
|
The C30-Modulation of Betulinic Acid Using 1,2,4-Triazole: A Promising Strategy for Increasing Its Antimelanoma Cytotoxic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227807. [PMID: 36431906 PMCID: PMC9697306 DOI: 10.3390/molecules27227807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Cancer, in all its types and manifestations, remains one of the most frequent causes of death worldwide; an important number of anticancer drugs have been developed from plants, fungi and animals, starting with natural compounds that were later derivatized in order to achieve an optimized pharmacokinetic/pharmacological profile. Betulinic acid is a pentacyclic triterpenic compound that was identified as an anticancer agent whose main advantage consists in its selective activity, which ensures the almost total lack of cytotoxic side effects. Conjugates of betulinic acid with substituted triazoles, scaffolds with significant pharmacological properties, were synthesized and tested as anticancer agents in order to achieve new therapeutic alternatives. The current paper aims to obtain a C30-1,2,4-triazole derivative of betulinic acid simultaneously acetylated at C3 whose biological activity was tested against RPMI melanoma cells. The compound revealed significant cytotoxic effects at the tested concentrations (2, 10 and 50 μΜ) by significantly decreasing the cell viability to 88.3%, 54.7% and 24.5%, respectively, as compared to the control. The compound's testing in normal HaCaT cells showed a lack of toxicity, which indicates its selective dose-dependent anticancer activity. The investigation of its underlying molecular mechanism revealed an apoptotic effect induced at the mitochondrial level, which was validated through high-resolution respirometry studies.
Collapse
|