1
|
Hong L, Cai X, Zhan Y, Liu S, Zou P, Chen Y, Shao L. TLR2 activates AP-1 to facilitate CTGF transcription and stimulate doxorubicin-induced myocardial injury. Br J Pharmacol 2025. [PMID: 40097259 DOI: 10.1111/bph.17423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND PURPOSE Our study aimed to explore the mechanistic network of toll-like receptor 2 (TLR2)/activator protein-1 (AP-1) combined with SOX10 activation of the mitogen-activated protein kinase (MAPK) pathway via connective tissue growth factor (CTGF) in doxorubicin (Dox)-induced myocardial injury. EXPERIMENTAL APPROACH Rats with Dox-induced myocardial injury were treated with a TLR2 inhibitor or CTGF silencing lentiviral vector. H9c2 cells were treated with genetic vectors or MAPK pathway activators. Cardiac function was tested using echocardiography and serum markers. H&E, Sirius red and TUNEL staining were used to detect myocardial pathological changes, collagen accumulation and apoptosis. Western blot was used to detect proteins related to cardiac hypertrophy, fibrosis, apoptosis and the MAPK pathway. H9c2 cell injury was assessed by testing cell viability, lactate dehydrogenase (LDH) release and mitochondrial membrane potential. KEY RESULTS TLR2 and CTGF were highly expressed in patients with heart failure, and Dox treatment further increased their expression. Inhibiting TLR2 or silencing CTGF improved cardiac function and reduced myocardial fibrosis and apoptosis in Dox-treated rats. Silencing of TLR2 alleviated Dox-induced H9c2 cell injury, which was nullified by CTGF overexpression. TLR2 activated AP-1, which cooperated with SOX10 to promote CTGF transcription. MAPK activation aggravated H9c2 cells against Dox-induced injury. CONCLUSIONS AND IMPLICATIONS TLR2 activates AP-1 which cooperates with SOX10 to promote CTGF transcription and subsequently activate the MAPK pathway, thereby stimulating Dox-induced myocardial injury.
Collapse
Affiliation(s)
- Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Songtao Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yanmei Chen
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
2
|
Ogutveren MM, Satiroglu O, Ozden Z, Akyildiz K, Yilmaz A, Mercantepe F, Yilmaz AS, Koc H, Mercantepe T. Cardioprotective Effects of Dapagliflozin and Trimetazidine on Doxorubicin-Induced Cardiotoxicity in Streptozotocin-Induced Type 1 Diabetic Rats via Endoplasmic Reticulum Stress. J Clin Med 2025; 14:1315. [PMID: 40004844 PMCID: PMC11856595 DOI: 10.3390/jcm14041315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Diabetic cardiomyopathy is a distinct myocardial dysfunction characterized by structural and functional changes in the heart that occur in diabetic patients independently of coronary artery disease or hypertension. It is closely associated with oxidative stress, inflammation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, and contributes to progressive cardiac damage. This study aimed to evaluate the cardioprotective effects of dapagliflozin (DAPA) and trimetazidine (TMZ) in a rat model of doxorubicin-induced cardiomyopathy with streptozotocin-induced diabetes, focusing on their potential mechanisms related to ER stress. Methods: A total of 48 Sprague Dawley rats aged 6-8 weeks were randomly distributed equally into six cages. The diabetes model was induced by intraperitoneal administration of streptozotocin (STZ) and rats with blood glucose levels above 250 mg/dL were considered diabetic. For those rats with diabetes, cardiotoxicity was induced by intraperitoneal injection of 5 mg/kg/week doxorubicin (DOXO) for 4 weeks. After a cumulative dose of 20 mg/kg doxorubicin, a week break was given, followed by the administration of TMZ (10 mg/kg) and/or DAPA (10 mg/kg) to the treatment groups. Results: STZ administration caused diabetes and significant degeneration in cardiomyocytes. With the addition of DOXO (STZ + DOXO), cardiomyocyte degeneration became more severe. When the study groups were histopathologically evaluated based on parameters of degenerative cardiomyocytes, vascular congestion, and edema, it was shown that both TMZ and DAPA, whether applied alone or in combination, reduced damage in heart tissue. Both TMZ and DAPA reduced cardiomyocyte damage, and their combination provided the lowest level of damage through the reduced ER stress pathway by reducing GRP 78 and CHOP positivity. Conclusions: TMZ and DAPA reduce ER stress and have protective effects against diabetic-induced cardiotoxicity. Combination therapy or TMZ was found to be more effective than DAPA in alleviating ER stress. Combination therapy appears to carry potential effects for reducing cardiac cell damage in individuals with diabetes.
Collapse
Affiliation(s)
- Muhammed Mursel Ogutveren
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.M.O.); (A.S.Y.); (H.K.)
| | - Omer Satiroglu
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.M.O.); (A.S.Y.); (H.K.)
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (Z.O.); (T.M.)
| | - Kerimali Akyildiz
- Department of Medical Services and Techniques, Health Services Vocational School, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ahmet Seyda Yilmaz
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.M.O.); (A.S.Y.); (H.K.)
| | - Haldun Koc
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (M.M.O.); (A.S.Y.); (H.K.)
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (Z.O.); (T.M.)
| |
Collapse
|
3
|
Mf NM, Arunachalam S, Sheikh A, Saraswathiamma D, Albawardi A, Al Marzooqi S, Jha NK, Subramanya S, Beiram R, Ojha S. α-Bisabolol: A Dietary Sesquiterpene that Attenuates Apoptotic and Nonapoptotic Cell Death Pathways by Regulating the Mitochondrial Biogenesis and Endoplasmic Reticulum Stress-Hippo Signaling Axis in Doxorubicin-Induced Acute Cardiotoxicity in Rats. ACS Pharmacol Transl Sci 2024; 7:2694-2705. [PMID: 39296269 PMCID: PMC11406691 DOI: 10.1021/acsptsci.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
The potential for multiorgan toxicities is a significant barrier to the therapeutic use of doxorubicin (DOX) in cancer treatment. With regard to DOX-induced acute cardiotoxicity in rats, the current investigation sought to assess the cardioprotective function of α-bisabolol (BSB) as well as the underlying pharmacological and molecular processes. Acute cardiotoxicity was induced in the rats by the intraperitoneal injection of DOX (12.5 mg/kg, single dosage). Over the course of 5 days, the rats were administered 25 mg/kg of BSB orally twice a day. The DOX administration induced cardiac damage, as evidenced by altered cardiospecific diagnostic markers and macroscopic enzyme mapping assay. The occurrence of mitochondrial oxidative stress was observed by a significant decline in antioxidant defense along with an increase in lipid peroxidation. DOX also perturbed DNA damage, mitochondrial biogenesis, mitochondrial fission and dysfunction, ER stress, Hippo signaling, and caspase-dependent and independent apoptosis including necroptosis and ferroptosis in the myocardium of rats. Conversely, it has been noted that the administration of BSB preserves the myocardium and reverses all cellular, molecular, and structural disruptions in the cardiac tissues of rats exposed to DOX-induced toxicity. The results that are currently available unequivocally show the cardioprotective role of BSB in DOX-induced cardiotoxicity. This effect is attributed to BSB's strong antioxidant, antilipid peroxidative, and antiapoptotic properties, which are mediated by advantageous changes in multiple signaling pathways.
Collapse
Affiliation(s)
- Nagoor Meeran Mf
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Azimullah Sheikh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Dhanya Saraswathiamma
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Saeeda Al Marzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sandeep Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| |
Collapse
|
4
|
Marafon BB, Pinto AP, de Sousa Neto IV, da Luz CM, Pauli JR, Cintra DE, Ropelle ER, Simabuco FM, Pereira de Moura L, de Freitas EC, Rivas DA, da Silva ASR. The role of interleukin-10 in mitigating endoplasmic reticulum stress in aged mice through exercise. Am J Physiol Endocrinol Metab 2024; 327:E384-E395. [PMID: 39082901 DOI: 10.1152/ajpendo.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
Although unfolded protein response (UPR) is essential for cellular protection, its prolonged activation may induce apoptosis, compromising cellular longevity. The aging process increases the endoplasmic reticulum (ER) stress in skeletal muscle. However, whether combined exercise can prevent age-induced ER stress in skeletal muscle remains unknown. Evidence suggests that ER stress may increase inflammation by counteracting the positive effects of interleukin-10 (IL-10), whereas its administration in cells inhibits ER stress and apoptosis. This study verified the effects of aging and combined exercise on physical performance, ER stress markers, and inflammation in the quadriceps of mice. Moreover, we verified the effects of IL-10 on ER stress markers. C57BL/6 mice were distributed into young (Y, 6 mo old), old sedentary (OS, sedentary, 24 mo old), and old trained group (OT, submitted to short-term combined exercise, 24 mo old). To clarify the role of IL-10 in UPR pathways, knockout mice lacking IL-10 were used. The OS mice presented worse physical performance and higher ER stress-related proteins, such as C/EBP homologous protein (CHOP) and phospho-eukaryotic translation initiation factor 2 alpha (p-eIF2α/eIF2α). The exercise protocol increased muscle strength and IL-10 protein levels in OT while inducing the downregulation of CHOP protein levels compared with OS. Furthermore, mice lacking IL-10 increased BiP, CHOP, and p-eIF2α/eIF2α protein levels, indicating this cytokine can regulate the ER stress response in skeletal muscle. Bioinformatics analysis showed that endurance and resistance training downregulated DNA damage inducible transcript 3 (DDIT3) and XBP1 gene expression in the vastus lateralis of older people, reinforcing our findings. Thus, combined exercise is a potential therapeutic intervention for promoting adjustments in ER stress markers in aged skeletal muscle.NEW & NOTEWORTHY Aging elevates endoplasmic reticulum (ER) stress in skeletal muscle, potentially heightening inflammation by opposing interleukin-10 (IL-10) effects. This study found that short-term combined exercise boosted strength and IL-10 protein levels while reducing CHOP protein levels in older mice. In addition, IL-10-deficient mice exhibited increased ER stress markers, highlighting IL-10's role in regulating ER stress in skeletal muscle. Consequently, combined exercise emerges as a therapeutic intervention to elevate IL-10 and adjust ER stress markers in aging.
Collapse
Affiliation(s)
- Bruno Brieda Marafon
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Caroline Mantovani da Luz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - José Rodrigo Pauli
- School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Dennys Esper Cintra
- School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | | - Ellen Cristini de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- Department of Health Science, Ribeirao Preto, Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Donato Americo Rivas
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
5
|
Sun M, Zhang X, Tan B, Zhang Q, Zhao X, Dong D. Potential role of endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity-an update. Front Pharmacol 2024; 15:1415108. [PMID: 39188945 PMCID: PMC11345228 DOI: 10.3389/fphar.2024.1415108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
As a chemotherapy agent, doxorubicin is used to combat cancer. However, cardiotoxicity has limited its use. The existing strategies fail to eliminate doxorubicin-induced cardiotoxicity, and an in-depth exploration of its pathogenesis is in urgent need to address the issue. Endoplasmic reticulum stress (ERS) occurs when Endoplasmic Reticulum (ER) dysfunction results in the accumulation of unfolded or misfolded proteins. Adaptive ERS helps regulate protein synthesis to maintain cellular homeostasis, while prolonged ERS stimulation may induce cell apoptosis, leading to dysfunction and damage to tissue and organs. Numerous studies on doxorubicin-induced cardiotoxicity strongly link excessive activation of the ERS to mechanisms including oxidative stress, calcium imbalance, autophagy, ubiquitination, and apoptosis. The researchers also found several clinical drugs, chemical compounds, phytochemicals, and miRNAs inhibited doxorubicin-induced cardiotoxicity by targeting ERS. The present review aims to outline the interactions between ERS and other mechanisms in doxorubicin-induced cardiotoxicity and summarize ERS's role in this type of cardiotoxicity. Additionally, the review enumerates several clinical drugs, phytochemicals, chemical compounds, and miRNAs targeting ERS for considering therapeutic regimens that address doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xin Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Boxuan Tan
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Malik A, Bagchi AK, Jassal DS, Singal PK. Doxorubicin‑induced cardiomyopathy is mitigated by empagliflozin via the modulation of endoplasmic reticulum stress pathways. Mol Med Rep 2024; 29:74. [PMID: 38488036 PMCID: PMC10958136 DOI: 10.3892/mmr.2024.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
Doxorubicin (Dox) exhibits a high efficacy in the treatment of numerous types of cancer. However, the beneficial cytotoxic effects of Dox are often accompanied by an increase in the risk of cardiotoxicity. Oxidative stress (OS) plays a key role in Dox‑induced cardiomyopathy (DIC). OS in cardiomyocytes disrupts endoplasmic reticulum (ER) function, leading to the accumulation of misfolded/unfolded proteins known as ER stress. ER stress acts as an adaptive mechanism; however, prolonged ER stress together with OS may lead to the initiation of cardiomyocyte apoptosis. The present study aimed to explore the potential of an anti‑diabetic drug, empagliflozin (EMPA), in mitigating Dox‑induced ER stress and cardiomyocyte apoptosis. In the present study, the effects of 1 h pretreatment of EMPA on Dox‑treated cardiomyocytes isolated from Sprague‑Dawley rats were investigated. After 24 h, EMPA pre‑treatment promoted cell survival in the EMPA + Dox group compared with the Dox group. Results of the present study also demonstrated that EMPA mitigated overall ER stress, as the increased expression of ER stress markers was reduced in the EMPA + Dox group. Additionally, OS, inflammation and expression of ER stress apoptotic proteins were also significantly reduced following EMPA pre‑treatment in the EMPA + Dox group. Thus, EMPA may exert beneficial effects on Dox‑induced ER stress and may exhibit potential changes that can be utilised to further evaluate the role of EMPA in mitigating DIC.
Collapse
Affiliation(s)
- Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H 2A6, Canada
| | - Ashim K. Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H 2A6, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, St. Boniface Hospital, Winnipeg, Manitoba R2H 2A6, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H 2A6, Canada
| |
Collapse
|
7
|
Abdelgawad IY, George B, Grant MKO, Huang Y, Shan Y, Huang RS, Zordoky BN. Sex-related differences in delayed doxorubicin-induced cardiac dysfunction in C57BL/6 mice. Arch Toxicol 2024; 98:1191-1208. [PMID: 38244039 DOI: 10.1007/s00204-023-03678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Cancer survivors may experience long-term cardiovascular complications due to chemotherapeutic drugs such as doxorubicin (DOX). The exact mechanism of delayed DOX-induced cardiotoxicity has not been fully elucidated. Sex is an important risk factor for DOX-induced cardiotoxicity. In the current study, we identified sex differences in delayed DOX-induced cardiotoxicity and determined the underlying molecular determinants of the observed sexual dimorphism. Five-week-old male and female mice were administered intraperitoneal injections of DOX (4 mg/kg/week) or saline for 6 weeks. Echocardiography was performed 5 weeks after the last dose of DOX to evaluate cardiac function. Thereafter, mice were sacrificed and gene expression of markers of apoptosis, senescence, and inflammation was measured by PCR in hearts and livers. Proteomic profiling of the heart from both sexes was conducted to determine differentially expressed proteins (DEPs). Only DOX-treated male, but not female, mice demonstrated cardiac dysfunction, cardiac atrophy, and upregulated cardiac expression of Nppb and Myh7. No sex-related differences were observed in DOX-induced expression of most apoptotic, senescence, and pro-inflammatory markers. However, the gene expression of Trp53 was significantly reduced in hearts of DOX-treated female mice only. The anti-inflammatory marker Il-10 was significantly reduced in hearts of DOX-treated male mice only, while the pro-inflammatory marker Il-1α was significantly reduced in livers of DOX-treated female mice only. Gene expression of Tnf-α was reduced in hearts of both DOX-treated male and female mice. Proteomic analysis identified several DEPs after DOX treatment in a sex-specific manner, including anti-inflammatory acute phase proteins. This is the first study to assess sex-specific proteomic changes in a mouse model of delayed DOX-induced cardiotoxicity. Our proteomic analysis identified several sexually dimorphic DEPs, many of which are associated with the anti-inflammatory marker Il-10.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Benu George
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yuting Shan
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Feng Y, Ji Q, Ye D, Pan H, Lu X, Gan L, Wang M, Liu J, Xu Y, Zhang J, Zhao M, Xu S, Yin Z, Pan W, Wei C, Liu M, Wan J, Ye J. IL-27p28 knockout aggravates Doxorubicin-induced cardiotoxicity by regulating Macrophage polarization. Biochem Pharmacol 2023; 210:115469. [PMID: 36868324 DOI: 10.1016/j.bcp.2023.115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Several interleukins (ILs) have been demonstrated to participate in cardiac injury. This study aimed to investigate whether IL-27p28 plays a regulatory role in doxorubicin (DOX)-induced cardiac injury by regulating inflammation and oxidative stress. METHODS Dox was used to establish a mouse cardiac injury model, and IL-27p28 was knocked out to observe its role in cardiac injury. In addition, monocytes were adoptively transferred to clarify whether monocyte-macrophages mediate the regulatory role of IL-27p28 in DOX-induced cardiac injury. RESULTS IL-27p28 knockout significantly aggravated DOX-induced cardiac injury and cardiac dysfunction. IL-27p28 knockout also upregulated the phosphorylation levels of p65 and STAT1 and promoted M1 macrophage polarization in DOX-treated mice, which increased cardiac inflammation and oxidative stress. Moreover, IL-27p28-knockout mice that were adoptively transferred WT monocytes exhibited worse cardiac injury and cardiac dysfunction and higher cardiac inflammation and oxidative stress. CONCLUSIONS IL-27p28 knockdown aggravates DOX-induced cardiac injury by worsening the M1 macrophage/M2 macrophage imbalance and its associated inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; Institute of Cardiovascular Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
10
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
11
|
Mechanism of the inhibitory effect of acupotomy on chondrocyte apoptosis in KOA rabbits explored via proteomics 运用蛋白质组学技术探讨针刀抗KOA兔软骨细胞凋亡的作用机制. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2023. [DOI: 10.1016/j.wjam.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (DOX), as a kind of chemotherapy agent with remarkable therapeutic effect, can be used to treat diverse malignant tumors clinically. Dose-dependent cardiotoxicity is the most serious adverse reaction after DOX treatment, which eventually leads to cardiomyopathy and greatly limits the clinical application of DOX. DOX-induced cardiomyopathy is not a result of a single mechanistic action, and multiple mechanisms have been discovered and demonstrated experimentally, such as oxidative stress, inflammation, mitochondrial damage, calcium homeostasis disorder, ferroptosis, autophagy and apoptosis. Dexrazoxane (DEX) is the only protective agent approved by FDA for the treatment of DOX cardiomyopathy, but its clinical treatment still has some limitations. Therefore, we need to find other effective therapeutic drugs as soon as possible. In this paper, the drugs that effectively improve cardiomyopathy in recent years are mainly described from the aspects of natural drugs, endogenous substances, new dosage forms, herbal medicines, chemical modification and marketed drugs. The aim of the present study is to evaluate the effects of these drugs on DOX-induced anticancer and cardiomyopathy curative effects, so as to provide some reference value for clinical treatment of DOX-induced cardiomyopathy in the future.
Collapse
Affiliation(s)
- Ye Chen
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Saixian Shi
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|