1
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
2
|
Grodin EN, Karoly H, Browning BD, Coleman L, Farokhnia M, Kryszak LA, Meredith LR, Squeglia LM. Utilizing blood inflammatory markers in alcohol studies: Considerations and recommendations for study design, sample collection, and data analysis. Neurosci Biobehav Rev 2025; 173:106142. [PMID: 40216171 DOI: 10.1016/j.neubiorev.2025.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
A large body of evidence suggests that heavy alcohol use is associated with dysregulated immune function, and that immune dysfunction in turn contributes to the pathophysiology of alcohol use disorder (AUD). As such, alcohol researchers have increasingly begun to include measurements of immune function-primarily peripheral circulating cytokines-in human studies, with the goal of testing associations with clinically-relevant behavioral measures. To date, findings and implications from these studies have been inconsistent and difficult to interpret, likely due to methodological challenges related to study design and implementation. In particular, the existing literature has demonstrated sample processing concerns, differences in assay methods, limited selection of analytes, and sample selection biases, all of which may contribute to inconsistent results. We briefly review the field, discuss these and other challenges, and propose guidance for designing studies on inflammation among heavy-drinking human participants. We note that conducting such studies requires appreciable consideration and planning, and ideally should involve an interdisciplinary team of experts, including immunologists, physiologists, and technical experts in bioassays, alongside experts in the field of interest (e.g., AUD). We highlight the importance of considering participant selection, analyte selection, sample collection, sample handling and storage, and assay methods, and suggest that the field move towards standardization of procedures and reporting. We propose that undertaking these changes in study design and implementation should produce consilience in findings and aid in our overall understanding of the complex relationship between alcohol exposure and immune function.
Collapse
Affiliation(s)
- Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Hollis Karoly
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Leon Coleman
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Bethesda, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lindsay A Kryszak
- National Institute on Drug Abuse, Intramural Research Program, Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay R Meredith
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Chen P, Chen W, Xu L, Luan L, Peng R, Zhang X, Yang H. Decreased serum VEGF and NRG1β1 levels in male patients with chronic schizophrenia: VEGF correlation with clinical symptoms and cognitive deficits. J Psychiatr Res 2024; 176:85-92. [PMID: 38850582 DOI: 10.1016/j.jpsychires.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and neuregulin1 (NRG1) are multifunctional trophic factors reported to be dysregulated in schizophrenia. However, the relationships between serum concentrations and schizophrenia symptoms have differed markedly across studies, possibly because schizophrenia is a highly heterogenous disorder. The aim of this study was to investigate the associations of serum VEGF and NRG1 with clinical symptoms and cognitive deficits specifically in male patients with chronic schizophrenia. METHODS The study included 79 male patients with chronic schizophrenia and 79 matched healthy individuals. Serum VEGF, NRG1β1, S100B, S100A8, and neuropilin1 were measured using the Luminex liquid suspension chip detection method, psychopathological symptom severity using the Positive and Negative Symptom Scale (PANSS), and cognitive dysfunction using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS Serum VEGF and NRG1β1 concentrations were significantly lower in male chronic schizophrenic patients than healthy controls (P < 0.05), while serum S100B, S100A8, and neuropilin1 concentrations did not differ between groups (P > 0.05). Serum VEGF concentration was negatively correlated with PANSS negative subscore (beta = -0.220, t = -2.07, P = 0.042), general psychopathology subscore (beta = -0.269, t = -2.55, P = 0.013), and total score (beta = -0.234, t = -2.12, P = 0.038), and positively correlated with RBANS language score (beta = 0.218, t = 2.03, P = 0.045). Alternatively, serum NRG1β1 concentration was not correlated with clinical symptoms or cognitive deficits (all P > 0.05). CONCLUSION Dysregulation of VEGF and NRG1β1 signaling may contribute to the pathogenesis of chronic schizophrenia in males. Moreover, abnormal VEGF signaling may contribute directly or through intermediary processes to neuropsychiatric and cognitive symptom expression.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Lingshu Luan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| | - Ruijie Peng
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| |
Collapse
|
5
|
Escudero B, López-Valencia L, Arias Horcajadas F, Orio L. Divergent Roles of APOAI and APOM in the Identification of Alcohol Use Disorder and Their Association With Inflammation and Cognitive Decline: A Pilot Study. Int J Neuropsychopharmacol 2024; 27:pyae029. [PMID: 38970624 PMCID: PMC11287869 DOI: 10.1093/ijnp/pyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) courses with inflammation and cognitive decline. Apolipoproteins have emerged as novel target compounds related to inflammatory processes and cognition. METHODS A cross-sectional study was performed on abstinent AUD patients with at least 1 month of abstinence (n = 33; 72.7% men) and healthy controls (n = 34; 47.1% men). A battery of plasma apolipoproteins (APOAI, APOAII, APOB, APOCII, APOE, APOJ, and APOM), plasma inflammatory markers (LPS, LBP), and their influence on cognition and presence of the disorder were investigated. RESULTS Higher levels of plasma APOAI, APOB, APOE, and APOJ, as well as the proinflammatory LPS, were observed in the AUD group, irrespective of sex, whereas APOM levels were lower vs controls. Hierarchical logistic regression analyses, adjusting for covariates (age, sex, education), associated APOM with the absence of cognitive impairment in AUD and identified APOAI and APOM as strong predictors of the presence or absence of the disorder, respectively. APOAI and APOM did not correlate with alcohol abuse variables or liver status markers, but they showed an opposite profile in their associations with LPS (positive for APOAI; negative for APOM) and cognition (negative for APOAI; positive for APOM) in the entire sample. CONCLUSIONS The HDL constituents APOAI and APOM were differentially regulated in the plasma of AUD patients compared with controls, playing divergent roles in the disorder identification and associations with inflammation and cognitive decline.
Collapse
Affiliation(s)
- Berta Escudero
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Leticia López-Valencia
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Francisco Arias Horcajadas
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| | - Laura Orio
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| |
Collapse
|
6
|
Torres-Galván S, Flores-López M, Ochoa E, Requena-Ocaña N, Araos P, Herrera-Imbroda J, Muga R, Serrano A, Rodríguez de Fonseca F, Pavón-Morón FJ, Haro G, García-Marchena N. Dysregulation of Plasma Growth Factors and Chemokines in Cocaine Use Disorder: Implications for Dual Diagnosis with Schizophrenia and Antisocial Personality Disorder in an Exploratory Study. Neuropsychobiology 2024; 83:73-88. [PMID: 38768577 PMCID: PMC11210571 DOI: 10.1159/000536265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Dual diagnosis in individuals with cocaine use disorders (CUDs) presents a mental health challenge marked by an increased susceptibility to disabling morbidities and premature mortality. Despite extensive research on depression and anxiety, other prevalent comorbidities, such as psychotic and personality disorders, have received less attention. This study explores inflammation-related mediators as potential biomarkers for CUD and dual diagnosis with schizophrenia (SCZ) or antisocial personality disorder (APD). METHODS This exploratory study included 95 participants, comprising 40 healthy subjects and 55 abstinent patients with CUD. Lifetime CUD was diagnosed either as single diagnosis (CUD group, N = 25) or as a dual diagnosis (DD group. N = 30) with SCZ (CUD+SCZ subgroup) or APD (CUD+APD subgroup). Participants were clinically assessed, and the plasma concentrations of growth factors (i.e., G-CSF, BDNF, and VEGF-A) and chemokines (i.e., CCL11/eotaxin-1, CCL2/MCP-1, and CXCL12/SDF-1) were determined and log(10)-transformed for analysis. RESULTS Growth factors and chemokines were dysregulated by CUD and psychiatric diagnoses. Specifically, patients in the CUD group exhibited significantly lower concentrations of G-CSF and CCL11/eotaxin-1 than the control group. In contrast, the DD group showed significantly higher concentrations of all analytes than both the CUD and control groups. Additionally, no differences in these analytes were observed between the CUD+SCZ and CUD+APD subgroups within the DD group. Regarding cocaine-related variables, significant associations were identified in the CUD group: an inverse correlation between the age at first cocaine use and the concentrations of BDNF and CCL2/MCP-1; and a positive correlation between the duration of the cocaine abstinence and the concentrations of BDNF and CCL11/eotaxin-1. Lastly, a logistic regression model incorporating all these analytes demonstrated high discriminatory power in distinguishing patients with CUD alone from those with dual diagnosis. CONCLUSIONS Individuals with dual diagnosis of CUD exhibit elevated concentrations of growth factors and chemokines, distinguishing them from those with CUD alone. It is unclear whether the differences in these inflammatory mediators are specific to the presence of SCZ and APD. The study highlights potential biomarkers and associations, providing valuable insights into the intricate interplay of CUD and psychiatric disorders to enhance clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Sandra Torres-Galván
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
- Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Enrique Ochoa
- Servicio de Biología Molecular, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro Araos
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Roberto Muga
- Unidad de Adicciones, Servicio de Medicina Interna, Institut D’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Haro
- Servicio de Salud Mental, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
| | - Nuria García-Marchena
- Unidad de Adicciones, Servicio de Medicina Interna, Institut D’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Málaga, Spain
| |
Collapse
|
7
|
Pintori N, Mostallino R, Spano E, Orrù V, Piras MG, Castelli MP, De Luca MA. Immune and glial cell alterations in the rat brain after repeated exposure to the synthetic cannabinoid JWH-018. J Neuroimmunol 2024; 389:578325. [PMID: 38432046 DOI: 10.1016/j.jneuroim.2024.578325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
8
|
Rodríguez de Fonseca F, Medina-Paz F, Sapozhnikov M, Hurtado-Guerrero I, Rubio L, Martín-de-las-Heras S, Requena-Ocaña N, Flores-López M, Fernández-Arjona MDM, Rivera P, Serrano A, Serrano P, C. Zapico S, Suárez J. Plasma Concentrations of High Mobility Group Box 1 Proteins and Soluble Receptors for Advanced Glycation End-Products Are Relevant Biomarkers of Cognitive Impairment in Alcohol Use Disorder: A Pilot Study. TOXICS 2024; 12:190. [PMID: 38535924 PMCID: PMC10974976 DOI: 10.3390/toxics12030190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 01/14/2025]
Abstract
Alcohol use disorder (AUD) is a major component in the etiology of cognitive decline and dementia. Underlying mechanisms by which long-term alcohol abuse causes cognitive dysfunction include excessive oxidative stress and inflammation in the brain, activated by increased reactive oxygen/nitrogen species (ROS/RNS), advanced glycation end-products (AGEs) and high-mobility group box 1 protein (HMGB1). In a pilot study, we examine the potential clinical value of circulating biomarkers of oxidative stress including ROS/RNS, HMGB1, the soluble receptor for AGE (sRAGE), the brain biomarker of aging apolipoprotein D (ApoD), and the antioxidant regulator nuclear factor erythroid 2-related factor 2 (NRF2) as predictive indices for cognitive impairment (CI) in abstinent patients with AUD (n = 25) compared to patients with established Alzheimer's disease (AD, n = 26) and control subjects (n = 25). Plasma concentrations of sRAGE were evaluated with immunoblotting; ROS/RNS with a fluorometric kit; and HMGB1, ApoD, and NRF2 by ELISA. Abstinent AUD patients had higher sRAGE, ROS/RNS (p < 0.05), and ApoD (p < 0.01) concentrations, similar to those of AD patients, and lower NRF2 (p < 0.01) concentrations, compared to controls. These changes were remarkable in AUD patients with CI. HMGB1, and sRAGE correlated positively with duration of alcohol use (rho = 0.398, p = 0.022; rho = 0.404, p = 0.018), whereas sRAGE correlated negatively with periods of alcohol abstinence (rho = -0.340, p = 0.045). A predictive model including ROS/RNS, HMGB1, sRAGE, alcohol use duration, and alcohol abstinence periods was able to differentiate AUD patients with CI (92.3% of correct predictions, ROC-AUC= 0.90) from those without CI. In conclusion, we propose ROS/RNS, HMGB1, and sRAGE as stress biomarkers capable of predicting cognitive impairment in AUD patients.
Collapse
Affiliation(s)
- Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (F.M.-P.); (M.S.)
| | - Mira Sapozhnikov
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (F.M.-P.); (M.S.)
| | - Isaac Hurtado-Guerrero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Leticia Rubio
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Stella Martín-de-las-Heras
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - María del Mar Fernández-Arjona
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Pedro Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (F.M.-P.); (M.S.)
- Anthropology Department, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (F.R.d.F.); (I.H.-G.); (L.R.); (S.M.-d.-l.-H.); (N.R.-O.); (M.F.-L.); (M.d.M.F.-A.); (P.R.); (A.S.); (P.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
9
|
Stanciu GD, Ababei DC, Solcan C, Bild V, Ciobica A, Beschea Chiriac SI, Ciobanu LM, Tamba BI. Preclinical Studies of Canagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor, and Donepezil Combined Therapy in Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1620. [PMID: 38004485 PMCID: PMC10674192 DOI: 10.3390/ph16111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), is continuously growing worldwide, which leads to a heavy economic and societal burden. The lack of a safe and effective causal therapy in cognitive decline is an aggravating factor and requires investigations into the repurposing of commonly used drugs. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a new and efficient class of hypoglycemic drugs and, due to their pleiotropic effects, have indications that go beyond diabetes. There is emerging data from murine studies that SGLT2i can cross the blood-brain barrier and may have neuroprotective effects, such as increasing the brain-derived neurotrophic factor (BDNF), reducing the amyloid burden, inhibiting acetylcholinesterase (AChE) and restoring the circadian rhythm in the mammalian target of rapamycin (mTOR) activation. The current study investigates the effect of an SGLT2i and donepezil, under a separate or combined 21-day treatment on AD-relevant behaviors and brain pathology in mice. The SGLT2i canagliflozin was found to significantly improve the novelty preference index and the percentage of time spent in the open arms of the maze in the novel object recognition and elevated plus maze test, respectively. In addition, canagliflozin therapy decreased AChE activity, mTOR and glial fibrillary acidic protein expression. The results also recorded the acetylcholine M1 receptor in canagliflozin-treated mice compared to the scopolamine group. In the hippocampus, the SGLT2i canagliflozin reduced the microgliosis and astrogliosis in males, but not in female mice. These findings emphasize the value of SGLT2i in clinical practice. By inhibiting AChE activity, canagliflozin represents a compound that resembles AD-registered therapies in this respect, supporting the need for further evaluation in dementia clinical trials.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
| | - Daniela Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Ciobica
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin-Ioan Beschea Chiriac
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | - Loredana Maria Ciobanu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Alexandru Ioan Cuza High School, 37 Ion Creanga Street, 700317 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
10
|
Yang C, Liao C, Zhao J, Guan Q, Wang G, Han Q. Dysregulation of tryptophan metabolism and distortion of cell signaling after oral exposure to ethanol and Kynurenic acid. Gene 2023; 852:147061. [PMID: 36423775 DOI: 10.1016/j.gene.2022.147061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Kynurenic acid (KYNA), an unavoidable tryptophan metabolite during fermentation is naturally blended with alcohol in all alcoholic beverages. Thus, alcohol drinking inevitably results in co-intake of KYNA. Effects of alcohol or KYNA on human health have been widely studied. However, the combined effects of both remain unknown. Here we report that alcohol and KYNA have a synergistic impact of on global gene expression, especially the gene sets related to tryptophan metabolism and cell signaling. Adult mice were exposed to alcohol (ethanol) and/or KYNA daily for a week. Transcriptomes of the brain, kidney and liver were profiled via bulk RNA sequencing. Results indicate that while KYNA alone largely promotes, and alcohol alone mostly inhibits gene expression, alcohol and KYNA co-administration has a stronger inhibition of global gene expression. Tryptophan metabolism is severely skewed towards kynurenine pathway by decreasing tryptophan hydroxylase 2 and increasing tryptophan dioxygenase. Quantification of tryptophan metabolic enzymes corroborates the transcriptional changes of these enzymes. Furthermore, the co-administration greatly enhances the GnRH signaling pathway. This research provides critical data to better understand the effects of alcohol and KYNA in mix on human health.
Collapse
Affiliation(s)
- Cihan Yang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
11
|
Requena-Ocaña N, Araos P, Serrano-Castro PJ, Flores-López M, García-Marchena N, Oliver-Martos B, Ruiz JJ, Gavito A, Pavón FJ, Serrano A, Mayoral F, Suarez J, de Fonseca FR. Plasma Concentrations of Neurofilament Light Chain Protein and Brain-Derived Neurotrophic Factor as Consistent Biomarkers of Cognitive Impairment in Alcohol Use Disorder. Int J Mol Sci 2023; 24:1183. [PMID: 36674698 PMCID: PMC9866623 DOI: 10.3390/ijms24021183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
For a long time, Substance Use Disorders (SUDs) were not considered a component in the etiology of dementia. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders introduced substance-induced neurocognitive disorders, incorporating this notion to clinical practice. However, detection and monitoring of neurodegenerative processes in SUD patients remain a major clinical challenge, especially when early diagnosis is required. In the present study, we aimed to investigate new potential biomarkers of neurodegeneration that could predict cognitive impairment in SUD patients: the circulating concentrations of Neurofilament Light chain protein (NfL) and Brain-Derived Neurotrophic Factor (BDNF). Sixty SUD patients were compared with twenty-seven dementia patients and forty healthy controls. SUD patients were recruited and assessed using the Psychiatric Research Interview for Substance and Mental (PRISM) and a battery of neuropsychological tests, including the Montreal Cognitive Assessment test for evaluation of cognitive impairment. When compared to healthy control subjects, SUD patients showed increases in plasma NfL concentrations and NfL/BDNF ratio, as well as reduced plasma BDNF levels. These changes were remarkable in SUD patients with moderate-severe cognitive impairment, being comparable to those observed in dementia patients. NfL concentrations correlated with executive function and memory cognition in SUD patients. The parameters "age", "NfL/BDNF ratio", "first time alcohol use", "age of onset of alcohol use disorder", and "length of alcohol use disorder diagnosis" were able to stratify our SUD sample into patients with cognitive impairment from those without cognitive dysfunction with great specificity and sensibility. In conclusion, we propose the combined use of NfL and BDNF (NfL/BDNF ratio) to monitor substance-induced neurocognitive disorder.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
- School of Psychology, Complutense University of Madrid, Campus de Somosaguas, 28040 Madrid, Spain
| | - Pedro Araos
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
| | - Pedro J. Serrano-Castro
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29010 Malaga, Spain
- Neurology Service, Regional University Hospital of Malaga, 29010 Malaga, Spain
| | - María Flores-López
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
| | - Nuria García-Marchena
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
- Institute D, Research in Health Sciences Germans Trias i Pujol (IGTP), Addictions Unit-Internal Medicine Service, Campus Can Ruti, Carrer del Canyet s/n, 08916 Badalona, Spain
| | - Begoña Oliver-Martos
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29010 Malaga, Spain
- Neurology Service, Regional University Hospital of Malaga, 29010 Malaga, Spain
| | - Juan Jesús Ruiz
- Provincial Drug Addiction Center (CPD) of Malaga, Provincial Council of Malaga, C/Ana Solo de Zaldívar, n3, 29010 Malaga, Spain
| | - Ana Gavito
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
| | - Francisco Javier Pavón
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
- Center for Biomedical Research in the Cardiovascular Diseases Network (CIBERCV), Carlos III Health Institute, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Antonia Serrano
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
| | - Fermín Mayoral
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010 Malaga, Spain
| | - Juan Suarez
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
- Department of Anatomy, Legal Medicine and History of Science, School of Medicine, University of Malaga, Boulevard Louis Pasteur 32, 29071 Malaga, Spain
| | - Fernando Rodríguez de Fonseca
- Neuropsychopharmacology Group, Instituto IBIMA, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, Sótano, 29010 Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29010 Malaga, Spain
- Neurology Service, Regional University Hospital of Malaga, 29010 Malaga, Spain
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010 Malaga, Spain
| |
Collapse
|