1
|
Barbon S, Armellin F, Passerini V, De Angeli S, Primerano S, Del Pup L, Durante E, Macchi V, De Caro R, Parnigotto PP, Veronesi A, Porzionato A. Innate immune response in COVID-19: single-cell multi-omics profile of NK lymphocytes in a clinical case series. Cell Commun Signal 2024; 22:496. [PMID: 39407208 PMCID: PMC11476714 DOI: 10.1186/s12964-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) represents the biggest global health emergency in recent decades. The host immune response to SARS-CoV-2 seems to play a key role in disease pathogenesis and clinical manifestations, with Natural Killer (NK) lymphocytes being among the targets of virus-induced regulation. METHODS This study performed a single-cell multi-omics analysis of transcripts and proteins of NK lymphocytes in COVID-19 patients, for the characterization of the innate immunological response to infection. NK cells were isolated from peripheral blood samples collected from adult subjects divided into 3 study groups: (1) non-infected subjects (Naïve group, n = 3), (2) post COVID-19 convalescent subjects (Healed group, n = 3) and (3) patients that were vaccinated against SARS-CoV-2 (Vaccine group, n = 3). Cells were then analysed by the BD Rhapsody System for the single-cell multi-omics investigation of transcriptome and membrane proteins. RESULTS The bioinformatic analysis identified 5 cell clusters which differentially expressed gene/protein markers, defining NK cell subsets as "Active NK cells" and "Mature NK cells". Calculating the relative proportion of each cluster within patient groups, more than 40% of the Naïve group cell population was found to belong to Mature NKs, whereas more than 75% of the Vaccine group cell population belonged to the cluster of Active NKs. Regarding the Healed group, it seemed to show intermediate phenotype between Active and Mature NK cells. Differential expression of specific genes, proteins and signaling pathways was detected comparing the profile of the 3 experimental groups, revealing a more activated NK cell phenotype in vaccinated patients versus recovered individuals. CONCLUSIONS The present study detected differential expression of NK cell markers in relation to SARS-CoV-2 infection and vaccine administration, suggesting the possibility to identify key molecular targets for clinical-diagnostic use of the individual response to viral infection and/or re-infection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy.
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy.
| | - Fabrizio Armellin
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Verena Passerini
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Sergio De Angeli
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Simona Primerano
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Laura Del Pup
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Elisabetta Durante
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Arianna Veronesi
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy.
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| |
Collapse
|
2
|
Yang X, Mann KK, Wu H, Ding J. scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration. Genome Biol 2024; 25:198. [PMID: 39075536 PMCID: PMC11285326 DOI: 10.1186/s13059-024-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.
Collapse
Affiliation(s)
- Xiuhui Yang
- School of Software, Shandong University, 1500 Shunhua, Jinan, 250101, Shandong, China
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Hao Wu
- School of Software, Shandong University, 1500 Shunhua, Jinan, 250101, Shandong, China.
| | - Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, QC, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Mila-Quebec AI Institute, Montreal, QC, H2S 3H1, Canada.
| |
Collapse
|
3
|
Thin KA, Cross A, Angsuwatcharakon P, Mutirangura A, Puttipanyalears C, Edwards SW. Changes in immune cell subtypes during ageing. Arch Gerontol Geriatr 2024; 122:105376. [PMID: 38412791 DOI: 10.1016/j.archger.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The immune system comprises many different types of cells, each with different functions and properties during immune defence. The numbers and types of immune cells in the circulation is highly dynamic and regulated by infections, ageing and certain types of cancers. It is recognised that immune function decreases during ageing, but the biological age at which these functional changes occur is variable, and how ageing affects the different sub-types of lymphocytes, monocytes and NK cells in the circulation is not fully defined. METHODS In this study, we recruited 24 healthy volunteers over the age range of 23y to 89y and measured the numbers of different subclasses of circulating cells by immuno-phenotyping and flow cytometry. RESULTS We show increased monocyte:lymphocyte ratios in a > 50y cohort and most T cell subsets were decreased, except for CD4+ cells, which were increased in this cohort. In addition, there was NK cell expansion and increased HLA-DR+ T cells, but decreased numbers of classical monocytes and increased numbers of CD4+ monocytes in this >50y cohort. CONCLUSIONS These data indicate that healthy ageing is associated with changes in both the major cell groups but also individual subclasses of cells, and these are likely to result from continuous immune challenge and impaired development.
Collapse
Affiliation(s)
- Khin Aye Thin
- Joint PhD Program in Biomedical Sciences and Biotechnology between Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Andrew Cross
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charoenchai Puttipanyalears
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
| |
Collapse
|
4
|
Deng X, Terunuma H. Adoptive NK cell therapy: a potential revolutionary approach in longevity therapeutics. Immun Ageing 2024; 21:43. [PMID: 38926847 PMCID: PMC11201368 DOI: 10.1186/s12979-024-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The aging process intricately involves immune system dynamics, with a crucial role in managing senescent cells (SNCs) and their senescence-associated secretory phenotypes (SASPs). Unfortunately, immunosenescence, a progressively dysregulated immunity with age, hampers effective SNC elimination, leading to accumulation, coupled with the release of SASPs, which, in turn, inhibits immunity and heightened susceptibility to aging-associated diseases (AADs). Natural killer (NK) cells, integral to the innate immune system, play a pivotal role in addressing SNCs swiftly. These cells also coordinate with other components of both innate and adaptive immunity to surveil and eliminate these cells. Accordingly, preserving NK cell function during aging is crucial for evading AADs and promoting healthy aging. Alternatively, NK-cell-based therapies present promising avenues for addressing the challenges associated with aging. Notable, recent studies in adoptive NK cell therapy have shown promise in rejuvenating immunosenescence, eliminating SNCs, and alleviating SASPs. This progress provides the proof-concept of adoptive NK cell therapy for senotherapy and holds promise as an emerging revolution in longevity therapeutics.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan, Inc. 2-4-8 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan.
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan, Inc. 2-4-8 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-Cho, Shinjuku-Ku, Tokyo, 160-0017, Japan
| |
Collapse
|
5
|
Liu Q, Peng F, Liu H, Sun Q, Chen H, Xu X, Hu Z, Zhou X, Jin K, Xie J, Huang Y, Huang W, Yang Y. Overactivated MX1 Positive Natural Killer Cells Promote the Progression of Sepsis-Induced Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:3187-3200. [PMID: 38779429 PMCID: PMC11110828 DOI: 10.2147/jir.s460259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background Natural killer (NK) cells are key regulators of immune defense in sepsis-induced acute respiratory distress syndrome (ARDS), yet the characteristics of NK cell clusters in ARDS remain poorly understood. Methods A prospective and observational study enrolled septic patients with ARDS or not was conducted to determine the percentage of NK cells via flow cytometry. The transcriptomes of peripheral blood mononuclear cells (PBMCs) from healthy controls, patients with sepsis only, and patients with sepsis-induced ARDS were profiled. Vitro experiments were performed to confirm the mechanism mediating MX1+NK cell infiltration. Results A total of 115 septic patients were analyzed, among whom 63 patients developed ARDS and 52 patients did not. Decreased NK percentages were found in sepsis with ARDS patients (%, 7.46±4.40 vs 11.65±6.88, P=0.0001) compared with sepsis-only patients. A lower percentage of NK cells showed a significant increase in 28-day mortality. Single-cell sequencing analysis revealed distinct characteristics of NK cells in sepsis-induced ARDS, notably the identification of a unique cluster defined as MX1+NK cells. Flow cytometry analysis showed an elevated percentage of MX1+NK cells specifically in individuals with sepsis-induced ARDS, compared with patients with sepsis only. Pseudo-time analysis showed that MX1+NK cells were characterized by upregulation of type I interferon-induced genes and other pro-inflammatory genes. MX1+NK cells can respond to type I interferons and secrete type I interferons themselves. Ligand-receptor interaction analysis also revealed extensive interaction between MX1+NK cells and T/B cells, leading to an uncontrolled inflammatory response in ARDS. Conclusion MX1+NK cells can respond to type I interferons and secrete type I interferons themselves, promoting the development of sepsis-induced ARDS. Interfering with the infiltration of MX1+NK cells could be a therapeutic approach for this disease. Due to the limited sample size, a larger sample size was needed for further exploration.
Collapse
Affiliation(s)
- Qingxiang Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Fei Peng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Haitao Liu
- School of Life Science, Fudan University, Shanghai, 200000, People’s Republic of China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xinyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xing Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Kai Jin
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yingzi Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
6
|
Shao C, Xia N, Zhen Y, Zhang X, Yan N, Guo Q. Prognostic significance of natural killer cell depletion in predicting progressive fibrosing interstitial lung disease in idiopathic inflammatory myopathies. Front Immunol 2024; 15:1404828. [PMID: 38745647 PMCID: PMC11091831 DOI: 10.3389/fimmu.2024.1404828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Objectives Interstitial lung disease (ILD) is one of the common extramuscular involvement in idiopathic inflammatory myopathies (IIMs) (1). Several patients develop a progressive fibrosing ILD (PF-ILD) despite conventional treatment, resulting in a progressive deterioration in their quality of life (2). Here, we investigated the clinical and immune characteristics of IIM-ILD and risk factors for PF-ILD in IIM, mainly in anti-melanoma differentiation-associated protein 5 (anti-MDA5+) dermatomyositis (DM) and anti-synthetase syndrome (ASS). Methods Here, a prospective cohort of 156 patients with IIM-ILD were included in the longitudinal analysis and divided into the PF-ILD (n=65) and non-PF-ILD (n=91) groups, and their baseline clinical characteristics were compared. Univariate and multivariate Cox analyses were performed to identify the variables significantly associated with pulmonary fibrosis progression in the total cohort, then anti-MDA5+ DM and ASS groups separately. Results Peripheral blood lymphocyte counts, including T, B, and NK cell counts, were significantly lower in the PF-ILD group than in the non-PF-ILD group. This characteristic is also present in the comparison between patients with anti-MDA5+ DM and ASS. The multivariate Cox regression analysis revealed that age > 43.5 years [HR: 7.653 (95% CI: 2.005-29.204), p = 0.003], absolute NK cell count < 148 cells/μL [HR: 6.277 (95% CI: 1.572-25.067), p = 0.009] and absolute Th cell count < 533.2 cells/μL [HR: 4.703 (95% CI: 1.014-21.821), p = 0.048] were independent predictors of progressive fibrosing during 1-year follow-up for patients with anti-MDA5+ DM, while absolute count of NK cells < 303.3 cells/µL [HR: 19.962 (95% CI: 3.108-128.223), p = 0.002], absolute count of lymphocytes < 1.545×109/L [HR: 9.684 (95% CI: 1.063-88.186), p = 0.044], and ferritin > 259.45 ng/mL [HR: 6 (95% CI: 1.116-32.256), p = 0.037] were independent predictors of PF-ILD for patients with ASS. Conclusions Patients with anti-MDA5+ DM and ASS have independent risk factors for PF-ILD. Lymphocyte depletion (particularly NK cells) was significantly associated with PF-ILD within 1-year of follow-up for IIM-ILD.
Collapse
Affiliation(s)
- Chenyi Shao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nana Xia
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ninghui Yan
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jiading Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Li YY, Yuan MM, Li YY, Li S, Wang JD, Wang YF, Li Q, Li J, Chen RR, Peng JM, Du B. Cell-free DNA methylation reveals cell-specific tissue injury and correlates with disease severity and patient outcomes in COVID-19. Clin Epigenetics 2024; 16:37. [PMID: 38429730 PMCID: PMC10908074 DOI: 10.1186/s13148-024-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The recently identified methylation patterns specific to cell type allows the tracing of cell death dynamics at the cellular level in health and diseases. This study used COVID-19 as a disease model to investigate the efficacy of cell-specific cell-free DNA (cfDNA) methylation markers in reflecting or predicting disease severity or outcome. METHODS Whole genome methylation sequencing of cfDNA was performed for 20 healthy individuals, 20 cases with non-hospitalized COVID-19 and 12 cases with severe COVID-19 admitted to intensive care unit (ICU). Differentially methylated regions (DMRs) and gene ontology pathway enrichment analyses were performed to explore the locus-specific methylation difference between cohorts. The proportion of cfDNA derived from lung and immune cells to a given sample (i.e. tissue fraction) at cell-type resolution was estimated using a novel algorithm, which reflects lung injuries and immune response in COVID-19 patients and was further used to evaluate clinical severity and patient outcome. RESULTS COVID‑19 patients had globally reduced cfDNA methylation level compared with healthy controls. Compared with non-hospitalized COVID-19 patients, the cfDNA methylation pattern was significantly altered in severe patients with the identification of 11,156 DMRs, which were mainly enriched in pathways related to immune response. Markedly elevated levels of cfDNA derived from lung and more specifically alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells were observed in COVID-19 patients compared with healthy controls. Compared with non-hospitalized patients or healthy controls, severe COVID-19 had significantly higher cfDNA derived from B cells, T cells and granulocytes and lower cfDNA from natural killer cells. Moreover, cfDNA derived from alveolar epithelial cells had the optimal performance to differentiate COVID-19 with different severities, lung injury levels, SOFA scores and in-hospital deaths, with the area under the receiver operating characteristic curve of 0.958, 0.941, 0.919 and 0.955, respectively. CONCLUSION Severe COVID-19 has a distinct cfDNA methylation signature compared with non-hospitalized COVID-19 and healthy controls. Cell type-specific cfDNA methylation signature enables the tracing of COVID-19 related cell deaths in lung and immune cells at cell-type resolution, which is correlated with clinical severities and outcomes, and has extensive application prospects to evaluate tissue injuries in diseases with multi-organ dysfunction.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Ming-Ming Yuan
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Yuan-Yuan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Shan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Jing-Dong Wang
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Yu-Fei Wang
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Qian Li
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Jun Li
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Rong-Rong Chen
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Jin-Min Peng
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
8
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
9
|
Hammer Q, Cuapio A, Bister J, Björkström NK, Ljunggren HG. NK cells in COVID-19-from disease to vaccination. J Leukoc Biol 2023; 114:507-512. [PMID: 36976012 DOI: 10.1093/jleuko/qiad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti-SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2-infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti-SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Angelica Cuapio
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| |
Collapse
|
10
|
Wang Z, Cheng F, Xu Y, Li X, Meng S. Role of innate immunity in SARS-CoV-2 infection. BIOSAFETY AND HEALTH 2023; 5:280-288. [PMID: 40078906 PMCID: PMC11894970 DOI: 10.1016/j.bsheal.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 03/14/2025] Open
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activated macrophages, dendritic cells (D.C.), neutrophils, and natural killer (N.K.) cells are the first defense against infection. These immune effectors trap and ingest the virus, kill infected epithelial cells, or produce anti-viral cytokines. Evidence suggests that aging, obesity, and mental illness can lead to weakened innate immunity and, thus, are all associated with elevated infection and severe disease progression of coronavirus disease 2019 (COVID-19). Innate immune defense networks play a fundamental role in suppressing viral replication, infection establishment, and viral pathogenesis of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Cheng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiu Xu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Thirupathi A, Yong W, Oflaz O, Agascioglu E, Gu Y. Exercise and COVID-19: exercise intensity reassures immunological benefits of post-COVID-19 condition. Front Physiol 2023; 14:1036925. [PMID: 37275224 PMCID: PMC10233405 DOI: 10.3389/fphys.2023.1036925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Any form of physical activity, including exercise, has various benefits at the physiological (improving cardiac and respiratory functions, increasing skeletal muscle mass, and maintaining homeostasis) and psychological levels (improving cognitive function, reducing anxiety and depression) which help to combat any type of infection. In contrast, the infectivity ratio could reduce the physical activity of an individual, such as performing a habitual exercise. Adaptation to different exercise strategies including intensity and duration may better increase physical performance and improve the symptoms. For example, low to moderate intensity perhaps fails to induce this adaptive process, while high-intensity of exercise compromises immune health. This can aggravate the infection rate (Open window theory). However, high intensity with a shorter time produces various morphological alterations in the primary organs including the lungs and heart, which facilitate life support in COVID-19 patients. However, less information about exercise protocols failed to assure the benefits of exercise to COVID-19 patients, particularly post-COVID-19 conditions. Therefore, this review will answer how exercise intensity is crucial to reassure the exercise benefits for promoting safe participation before infection and post-COVID-19 conditions.
Collapse
Affiliation(s)
- Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Wang Yong
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ofcan Oflaz
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Eda Agascioglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Türkiye
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Savchenko AA, Kudryavtsev IV, Isakov DV, Sadowski IS, Belenyuk VD, Borisov AG. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals (Basel) 2023; 16:ph16040537. [PMID: 37111294 PMCID: PMC10144656 DOI: 10.3390/ph16040537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Post-COVID syndrome develops in 10–20% of people who have recovered from COVID-19 and it is characterized by impaired function of the nervous, cardiovascular, and immune systems. Previously, it was found that patients who recovered from infection with the SARS-CoV-2 virus had a decrease in the number and functional activity of NK cells. The aim of the study was to assess the effectiveness of recombinant human IL-2 (rhIL-2) administered to correct NK cell phenotype and functional activity in patients with post-COVID syndrome. Patients were examined after 3 months for acute COVID-19 of varying severity. The phenotype of the peripheral blood NK cells was studied by flow cytometry. It was found that disturbances in the cell subset composition in patients with post-COVID syndrome were characterized by low levels of mature (p = 0.001) and cytotoxic NK cells (p = 0.013), with increased release of immature NK cells (p = 0.023). Functional deficiency of NK cells in post-COVID syndrome was characterized by lowered cytotoxic activity due to the decreased count of CD57+ (p = 0.001) and CD8+ (p < 0.001) NK cells. In the treatment of patients with post-COVID syndrome with recombinant IL-2, peripheral blood NK cell count and functional potential were restored. In general, the effectiveness of using rhIL-2 in treatment of post-COVID syndrome has been proven in patients with low levels of NK cells.
Collapse
Affiliation(s)
- Andrei A. Savchenko
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Dmitry V. Isakov
- Institute of Experimental Medicine, Pavlov First St. Petersburg State Medical University of the Russian Federation Ministry of Healthcare, 197022 St. Petersburg, Russia
| | - Ivan S. Sadowski
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Vasily D. Belenyuk
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
13
|
Liontos A, Asimakopoulos AG, Markopoulos GS, Biros D, Athanasiou L, Tsourlos S, Dova L, Rapti IC, Tsiakas I, Ntzani E, Evangelou E, Tzoulaki I, Tsilidis K, Vartholomatos G, Dounousi E, Milionis H, Christaki E. Correlation of Lymphocyte Subpopulations, Clinical Features and Inflammatory Markers during Severe COVID-19 Onset. Pathogens 2023; 12:pathogens12030414. [PMID: 36986336 PMCID: PMC10057940 DOI: 10.3390/pathogens12030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Dysregulation of the immune response in the course of COVID-19 has been implicated in critical outcomes. Lymphopenia is evident in severe cases and has been associated with worse outcomes since the early phases of the pandemic. In addition, cytokine storm has been associated with excessive lung injury and concomitant respiratory failure. However, it has also been hypothesized that specific lymphocyte subpopulations (CD4 and CD8 T cells, B cells, and NK cells) may serve as prognostic markers for disease severity. The aim of this study was to investigate possible associations of lymphocyte subpopulations alterations with markers of disease severity and outcomes in patients hospitalized with COVID-19. Materials/Methods: A total of 42 adult hospitalized patients were included in this study, from June to July 2021. Flow-cytometry was used to calculate specific lymphocyte subpopulations on day 1 (admission) and on day 5 of hospitalization (CD45, CD3, CD3CD8, CD3CD4, CD3CD4CD8, CD19, CD16CD56, CD34RA, CD45RO). Markers of disease severity and outcomes included: burden of disease on CT (% of affected lung parenchyma injury), C-reactive protein and interleukin-6 levels. PO2/FiO2 ratio and differences in lymphocytes subsets between two timepoints were also calculated. Logistic and linear regressions were used for the analyses. All analyses were performed using Stata (version 13.1; Stata Corp, College Station, TX, USA). Results: Higher levels of CD16CD56 cells (Natural Killer cells) were associated with higher risk of lung injury (>50% of lung parenchyma). An increase in CD3CD4 and CD4RO cell count difference between day 5 and day 1 resulted in a decrease of CRP difference between these timepoints. On the other hand, CD45RARO difference was associated with an increase in the difference of CRP levels between the two timepoints. No other significant differences were found in the rest of the lymphocyte subpopulations. Conclusions: Despite a low patient number, this study showed that alterations in lymphocyte subpopulations are associated with COVID-19 severity markers. It was observed that an increase in lymphocytes (CD4 and transiently CD45RARO) resulted in lower CRP levels, perhaps leading to COVID-19 recovery and immune response homeostasis. However, these findings need further evaluation in larger scale trials.
Collapse
Affiliation(s)
- Angelos Liontos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros-George Asimakopoulos
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios S. Markopoulos
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Biros
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Lazaros Athanasiou
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Stavros Tsourlos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Leukothea Dova
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Iro-Chrisavgi Rapti
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ilias Tsiakas
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Ntzani
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos Evangelou
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ioanna Tzoulaki
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsilidis
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - George Vartholomatos
- Haematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Haralampos Milionis
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-26-5109-9640
| |
Collapse
|
14
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
15
|
Huțanu A, Manu D, Gabor MR, Văsieșiu AM, Andrejkovits AV, Dobreanu M. Dynamic Evaluation of Natural Killer Cells Subpopulations in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms231911875. [PMID: 36233174 PMCID: PMC9569797 DOI: 10.3390/ijms231911875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56−. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16−CD56++ NK cells in survivors vs. non–survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.
Collapse
Affiliation(s)
- Adina Huțanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Manuela Rozalia Gabor
- Department of Economic Science, Faculty of Economics and Law, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Anca Meda Văsieșiu
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Akos Vince Andrejkovits
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Minodora Dobreanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
16
|
Bhuiyan TR, Al Banna H, Kaisar MH, Karmakar PC, Hakim A, Akter A, Ahmed T, Tauheed I, Islam S, Hasnat MA, Sumon MA, Rashed A, Ghosh S, Clemens JD, Banu S, Shirin T, Weiskopf D, Sette A, Chowdhury F, Qadri F. Correlation of antigen-specific immune response with disease severity among COVID-19 patients in Bangladesh. Front Immunol 2022; 13:929849. [PMID: 36248882 PMCID: PMC9554593 DOI: 10.3389/fimmu.2022.929849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a protean disease causing different degrees of clinical severity including fatality. In addition to humoral immunity, antigen-specific T cells may play a critical role in defining the protective immune response against SARS-CoV-2, the virus that causes this disease. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell-specific immune responses, we sought to evaluate the activation-induced marker (AIM) and the status of different immune cell subsets during a COVID-19 infection. We analyzed a total of 115 participants, which included participants with asymptomatic, mild, moderate, and severe clinical symptoms. We observed decreased mucosal-associated invariant T (MAIT) cell frequency on the initial days of the COVID-19 infection in symptomatic patients compared to asymptomatic patients. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of the disease compared to both asymptomatic patients and healthy individuals. Moreover, we found a significant increase of AIM+ (both OX40+CD137+ and OX40+CD40L+) CD4+ T cells in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (especially spike peptides) compared to pre-pandemic controls who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIMs (CD137+CD69+), which indicates the exhaustion of CD8+ T cells during a COVID-19 infection. These findings suggest that patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T-cell response against shared viral determinants that ultimately induced T cells to mount further immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Hasan Al Banna
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Polash Chandra Karmakar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Tasnuva Ahmed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Shaumik Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Mohammad Abul Hasnat
- Department of Cardiology, Department of Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | - Mostafa Aziz Sumon
- Department of Cardiology, Department of Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | - Asif Rashed
- Department of Microbiology, Department of Medicine, Mugda Medical College and Hospital, Dhaka, Bangladesh
| | - Shuvro Ghosh
- Department of Microbiology, Department of Medicine, Mugda Medical College and Hospital, Dhaka, Bangladesh
| | - John D. Clemens
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- Department of Epidemiology, University of California Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, CA, United States
- International Vaccine Institute, Seoul, South Korea
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- *Correspondence: Firdausi Qadri,
| |
Collapse
|