1
|
Qiao X, Cao S, Chen S, Guo Y, Chen N, Zheng Y, Jin B. Salvianolic acid A alleviates H 2O 2-induced endothelial oxidative injury via miR-204-5p. Sci Rep 2024; 14:11931. [PMID: 38789509 PMCID: PMC11126572 DOI: 10.1038/s41598-024-62556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.
Collapse
Affiliation(s)
- Xilin Qiao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuyu Cao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuaiyu Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Guo
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nipi Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Zheng
- The 903rd Hospital of the People's Liberation Army, Hangzhou, Zhejiang, China.
| | - Bo Jin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Graham SM, Nance RM, Chen J, Wurfel MM, Hunt PW, Heckbert SR, Budoff MJ, Moore RD, Jacobson JM, Martin JN, Crane HM, López JA, Liles WC. Plasma Interleukin-6 (IL-6), Angiopoietin-2, and C-Reactive Protein Levels Predict Subsequent Type 1 Myocardial Infarction in Persons With Treated HIV Infection. J Acquir Immune Defic Syndr 2023; 93:282-291. [PMID: 37018921 PMCID: PMC10330055 DOI: 10.1097/qai.0000000000003207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND HIV infection leads to endothelial activation, promoting platelet adhesion, and accelerating atherosclerosis. Our goal was to determine whether biomarkers of endothelial activation and hemostasis/thrombosis were elevated in people with treated HIV (PWH) before myocardial infarction (MI). METHODS In a case-control study nested within the CFAR Network of Integrated Clinical Systems (CNICS) cohort, we compared 69 adjudicated cases with type 1 MI with 138 controls matched for antiretroviral therapy regimen. We measured angiopoietin-1, angiopoietin-2 (ANG-2), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), von Willebrand factor, C-reactive protein (CRP), interleukin-6 (IL-6), plasminogen activation inhibitor-1, P-selectin, serum amyloid-A, soluble CD14, and apolipoprotein A1 in stored plasma. Conditional logistic regression identified associations with subsequent MI, with and without adjustment for Atherosclerotic Cardiovascular Disease (ASCVD) and Veterans Aging Cohort Study (VACS) scores. RESULTS Higher IL-6 was associated with MI after adjustment for ASCVD score (adjusted odds ratio [AOR] 1.51, 95% confidence interval [95% CI]: 1.05 to 2.17 per standard-deviation-scaled log 2 increment). In a separate model adjusting for VACS score, higher ANG-2 (AOR 1.49, 95% CI: 1.04 to 2.14), higher CRP (AOR 1.45, 95% CI: 1.06 to 2.00), and higher IL-6 (AOR 1.68, 95% CI: 1.17 to 2.41) were associated with MI. In a sensitivity analysis excluding PWH with viral load ≥400 copies/mL, higher IL-6 remained associated with MI after adjustment for ASCVD score and after adjustment for VACS score. CONCLUSIONS Among PWH, higher levels of plasma IL-6, CRP, and ANG-2 predict subsequent type 1 MI, independent of conventional risk scores. IL-6 had the most consistent associations with type 1 MI, regardless of viral load suppression.
Collapse
Affiliation(s)
- Susan M. Graham
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Robin M. Nance
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | - Mark M. Wurfel
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Peter W. Hunt
- Department of Medicine, University of California at San Francisco, San Francisco, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Matthew J. Budoff
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | - Jeffrey N. Martin
- Departments of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA USA
| | - Heidi M. Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - José A. López
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | - W. Conrad Liles
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Aleksova A, Fluca AL, Gagno G, Pierri A, Padoan L, Derin A, Moretti R, Noveska EA, Azzalini E, D'Errico S, Beltrami AP, Zumla A, Ippolito G, Sinagra G, Janjusevic M. Long-term effect of SARS-CoV-2 infection on cardiovascular outcomes and all-cause mortality. Life Sci 2022; 310:121018. [PMID: 36183780 PMCID: PMC9561478 DOI: 10.1016/j.lfs.2022.121018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Since the very beginning of the coronavirus disease 2019 (COVID-19) pandemic in early 2020, it was evident that patients with cardiovascular disease (CVD) were at an increased risk of developing severe illness, and complications spanning cerebrovascular disorders, dysrhythmias, acute coronary syndrome, ischemic and non-ischemic heart disease, pericarditis, myocarditis, heart failure, thromboembolic disease, stroke, and death. Underlying these was excessive systemic inflammation and coagulopathy due to SARS-COV-2 infection, the effects of which also continued long-term as evidenced by post-COVID-19 cardiovascular complications. The acute and chronic cardiovascular effects of COVID-19 occurred even among those who were not hospitalized and had no previous CVD or those with mild symptoms. This comprehensive review summarizes the current understanding of molecular mechanisms triggered by the SARS-CoV-2 virus on various cells that express the angiotensin-converting enzyme 2, leading to endothelial dysfunction, inflammation, myocarditis, impaired coagulation, myocardial infarction, arrhythmia and a multisystem inflammatory syndrome in children or Kawasaki-like disease.
Collapse
Affiliation(s)
- Aneta Aleksova
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Alessandra Lucia Fluca
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Gagno
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Pierri
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Laura Padoan
- Department of Cardiology and Cardiovascular Physiopathology, Università degli Studi di Perugia, Perugia, Italy
| | - Agnese Derin
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy
| | - Rita Moretti
- Department of Internal Medicine and Neurology, Neurological Clinic, University of Trieste, Trieste, Italy
| | - Elena Aleksova Noveska
- Department of Pediatric and Preventive Dentistry, Faculty of Dental Medicine, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, Trieste, Italy
| | - Stefano D'Errico
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | | | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, UK; National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London, UK
| | | | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Milijana Janjusevic
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Vargas-Soria M, Ramos-Rodriguez JJ, Del Marco A, Hierro-Bujalance C, Carranza-Naval MJ, Calvo-Rodriguez M, van Veluw SJ, Stitt AW, Simó R, Bacskai BJ, Infante-Garcia C, Garcia-Alloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer´s disease and type two diabetes. Fluids Barriers CNS 2022; 19:88. [PMID: 36345028 PMCID: PMC9639294 DOI: 10.1186/s12987-022-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-β (Aβ) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aβ. METHODS To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aβ deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aβ. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS Our data support the cross-talk between metabolic disease and Aβ deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.
Collapse
Affiliation(s)
- Maria Vargas-Soria
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Currently at Department of Physiology, School of Health Sciences, University of Granada, Granada, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
- Salus-Infirmorum, University of Cadiz, Cadiz, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Susanne J van Veluw
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
5
|
Tao W, Cheng Y, Guo W, Kwapong WR, Ye C, Wu B, Zhang S, Liu M. Clinical features and imaging markers of small vessel disease in symptomatic acute subcortical cerebral microinfarcts. BMC Neurol 2022; 22:311. [PMID: 35999494 PMCID: PMC9396904 DOI: 10.1186/s12883-022-02824-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background As currently defined, recent small subcortical infarcts (RSSI) do not have a lower size boundary, and the smallest diffusion-weighted imaging (DWI) infarcts, which we term acute subcortical cerebral microinfarcts (As-CMI) with lesion diameter less than 5 mm, might have clinical implications distinct from RSSI. We aimed to investigate the distinct characteristics of As-CMI as compared to the larger size of RSSI regarding vascular risk factors, clinical manifestation, radiological markers of SVD distribution, and outcomes. Methods In a consecutive cohort, patients were selected with a magnetic resonance DWI-confirmed RSSI between January 2010 and November 2020. We measured axial infarct diameter and classified patients into two groups: The As-CMI group (diameter < 5 mm) versus the Larger RSSI group (diameter 5-20 mm). Clinical variables, including vascular risk factors, clinical symptoms/signs, lesion locations, and radiological markers of cerebral small vessel disease (SVD) on MRI were analyzed between the two groups. Patients were followed up for 12 months and functional outcomes were measured by the modified ranking scale (mRS). Results In a total of 584 patients with RSSI, 23 (3.9%) were defined as As-CMI. The most common neurological deficits with As-CMI were hemiparalysis (n = 20), followed by central facial/lingual palsy (n = 10) and hemidysesthesia (n = 10). Most As-CMIs were located in the basal ganglia (n = 11), followed by the thalamus (n = 5) and centrum semiovale (n = 4). No different regional distributions and symptoms/signs frequencies were found between the two groups except for a lower percentage of dysarthria in the As-CMI group (p = 0.008). In a multivariate analysis, patients with As-CMI were independently associated with the presence of lacunes (adjusted odds ratio [aOR] 2.88; 95% confidence interval [CI] 1.21–6.84), multiple lacunes (aOR 3.5, CI 1.29–9.48) and higher total SVD burden (aOR 1.68, CI 1.11–2.53). Patients with As-CMI did not show a better functional outcome after 12 months of follow-up. Conclusions Patients with As-CMI had a non-specific clinical profile but a higher burden of SVD, indicating As-CMI might be s sign of more severe small vascular injury. Whether its vascular features are associated with worse cognitive outcomes requires further investigation.
Collapse
Affiliation(s)
- Wendan Tao
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Yajun Cheng
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Wen Guo
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - William Robert Kwapong
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Chen Ye
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Bo Wu
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Shuting Zhang
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| | - Ming Liu
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| |
Collapse
|