1
|
Quiroz-Troncoso J, Alegría-Aravena N, Sáenz de Mierae B, Sánchez-Díez M, González-Martos R, Gavira-O'Neill CE, González EJ, González-Miquel M, Valdés Vergara C, González-Silva G, Bensadon-Naeder L, Galeano J, Ramírez-Castillejo C. Anticancer Potential, Phenolic Profile, and Antioxidant Properties of Synsepalum dulcificum (Miracle Berry) in Colorectal Tumor Cell Lines. Antioxidants (Basel) 2025; 14:381. [PMID: 40298626 DOI: 10.3390/antiox14040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Polyphenols, recognized for their antioxidant capacity, have shown potential in improving the response treatment of various diseases, including cancer. In this context, polyphenols have the ability to induce cytotoxicity in tumor cells, making them possible complementary agents to current treatments. The present study aims to evaluate the effect of the aqueous extract of Synsepalum dulcificum, using the commercial product DMB®, on the proliferation of colorectal tumor cells. An aqueous extract of DMB® was obtained, and 12 compounds were identified through high-performance liquid chromatography (HPLC), with protocatechuic acid, gallic acid, and catechin being the most prominent. Regarding cytotoxicity, the extracts reduced cell viability in the DLD-1, HT29, SW480, and SW620 cell lines, with IC50 values of 7, 11, 13, and 15 mg/mL, respectively. The combination of oxaliplatin with the DMB® extract reduced the resistant population by up to 50% in the DLD-1 and SW620 cell lines, affecting the G2/M and S phases of the cell cycle, respectively. Additionally, treatment with the DMB® extract induced an increase in the expression of BCL2, CASP3, and CASP9, suggesting a mechanism of action associated with apoptosis. The aqueous extract of Synsepalum dulcificum (DMB®) exhibited cytotoxicity in colorectal cancer cells, enhancing the effect of oxaliplatin and activating apoptotic pathways, suggesting its potential as an adjuvant in anticancer therapies.
Collapse
Affiliation(s)
- Josefa Quiroz-Troncoso
- HST Group, Centro de Tecnología Biomédica (CTB), Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Nicolás Alegría-Aravena
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Grupo de Biología y Producción de Cérvidos, Instituto de Desarrollo Regional, Universidad de Castilla La Mancha, 02006 Albacete, Spain
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, 28045 Madrid, Spain
| | - Blanca Sáenz de Mierae
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, ETSI Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Marta Sánchez-Díez
- HST Group, Centro de Tecnología Biomédica (CTB), Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raquel González-Martos
- HST Group, Centro de Tecnología Biomédica (CTB), Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Clara E Gavira-O'Neill
- HST Group, Centro de Tecnología Biomédica (CTB), Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Instituto de Investigación de Enfermedades Raras (IIER-AGH), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Emilio J González
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, ETSI Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Maria González-Miquel
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, ETSI Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Cristian Valdés Vergara
- Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica de Chile, Talca 3460000, Chile
| | - Gloria González-Silva
- Laboratorio de Microbiología Aplicada, Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile
| | | | - Javier Galeano
- Grupo de Sistemas Complejos, Departamento de Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Centro de Tecnología Biomédica (CTB), Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Flores-García LC, García-Castillo V, Pérez-Toledo E, Trujano-Camacho S, Millán-Catalán O, Pérez-Yepez EA, Coronel-Hernández J, Rodríguez-Dorantes M, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer. Cells 2025; 14:388. [PMID: 40072116 PMCID: PMC11898799 DOI: 10.3390/cells14050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis. Our results demonstrated the regulatory effect of HOTAIR on the expression of glycolysis and glutaminolysis enzymes in colorectal cancer cells. Specifically, through the overexpression and inhibition of HOTAIR, we determined its influence on the expression of the enzymes PFKFB4, PGK1, LDHA, SLC1A5, GLUD1, and GOT1, which had a direct impact on lactate and glutamate production. These findings indicate that HOTAIR plays a significant role in producing "oncometabolites" essential to maintaining the bioenergetics and biomass necessary for tumor cell survival by regulating glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Laura Cecilia Flores-García
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Eduardo Pérez-Toledo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Oliver Millán-Catalán
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Eloy Andrés Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Jossimar Coronel-Hernández
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico;
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| |
Collapse
|
3
|
Sánchez-Díez M, Romero-Jiménez P, Alegría-Aravena N, Gavira-O’Neill CE, Vicente-García E, Quiroz-Troncoso J, González-Martos R, Ramírez-Castillejo C, Pastor JM. Assessment of Cell Viability in Drug Therapy: IC50 and Other New Time-Independent Indices for Evaluating Chemotherapy Efficacy. Pharmaceutics 2025; 17:247. [PMID: 40006615 PMCID: PMC11859577 DOI: 10.3390/pharmaceutics17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cell viability assays play a crucial role in cancer research and the development of effective treatments. Evaluating the efficacy of conventional treatments across different tumor profiles is essential for understanding patient resistance to chemotherapy and relapse. The IC50 index has been commonly used as a guide in these assays. The idea behind the IC50 index is to compare cell proliferation under treatment with respect to a control population exposed to the same treatment. The index requires normalization to a control and is time dependent. These aspects are disadvantages, as small variations yield different results. In this article, we propose a new method to analyze cell viability assays. Methods: This method involves calculating the effective growth rate for both control (untreated) cells and cells exposed to a range of drug doses for short times, during which exponential proliferation can be assumed. The concentration dependence of the effective growth rate gives a real estimate of the treatment on cell proliferation. A curve fit of the effective growth rate related to concentration yields the concentration corresponding to a given effective growth rate. Results: We use this estimation to calculate the IC50 index and introduce two new parameters (ICr0 and ICrmed) to compare treatment efficacy under different culture conditions or cell lines. Conclusions: In summary, this study presents a new method to analyze cell viability assays and introduces two more precise parameters, improving the comparison and evaluation of efficacy under different conditions.
Collapse
Affiliation(s)
- Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paula Romero-Jiménez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
| | - Nicolás Alegría-Aravena
- Instituto de Desarrollo Regional (IDR) and Instituto de Investigación en Recursos Cinegéticos (IREC), Universidad de Castilla-La Mancha (UCLM), 02071 Albacete, Spain;
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, 02004 Albacete, Spain
| | - Clara E. Gavira-O’Neill
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Nageru S.L., 28045 Madrid, Spain
| | - Elena Vicente-García
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Nageru S.L., 28045 Madrid, Spain
| | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (P.R.-J.); (C.E.G.-O.); (E.V.-G.); (J.Q.-T.); (R.G.-M.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Rossetti A, Chonco L, Alegría N, Zelli V, García AJ, Ramírez-Castillejo C, Tessitore A, de Cabo C, Landete-Castillejos T, Festuccia C. General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma. Pharmaceutics 2024; 16:610. [PMID: 38794272 PMCID: PMC11125008 DOI: 10.3390/pharmaceutics16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.
Collapse
Affiliation(s)
- Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Louis Chonco
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Nicolas Alegría
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Cancer Stem Cell Research Group, Department of Biotechnology-Vegetal Biology, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Andrés J. García
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- Cancer Stem Cell Research Group, Department of Biotechnology-Vegetal Biology, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Carlos de Cabo
- Research Department, Neuropsychopharmacology Unit, Complejo Hospitalario Universitario de Albacete (CHUA), 02071 Albacete, Spain;
| | - Tomás Landete-Castillejos
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| |
Collapse
|
5
|
Fatima I, Ahmad R, Barman S, Gowrikumar S, Pravoverov K, Primeaux M, Fisher KW, Singh AB, Dhawan P. Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20. Br J Cancer 2024; 130:1046-1058. [PMID: 38278978 PMCID: PMC10951408 DOI: 10.1038/s41416-023-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristina Pravoverov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
6
|
Koltai T, Fliegel L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int J Mol Sci 2023; 25:87. [PMID: 38203255 PMCID: PMC10779383 DOI: 10.3390/ijms25010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
8
|
Alrubie TM, Alamri AM, Almutairi BO, Alrefaei AF, Arafah MM, Alanazi M, Semlali A, Almutairi MH. Higher Expression Levels of SSX1 and SSX2 in Patients with Colon Cancer: Regulated In Vitro by the Inhibition of Methylation and Histone Deacetylation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050988. [PMID: 37241221 DOI: 10.3390/medicina59050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Colon cancer (CC) has a high mortality rate and is often diagnosed at an advanced stage in Saudi Arabia. Thus, the identification and characterization of potential new cancer-specific biomarkers are imperative for improving the diagnosis of CC by detecting it at an early stage. Cancer-testis (CT) genes have been identified as potential biomarkers for the early diagnosis of various cancers. Among the CT genes are those belonging to the SSX family. In order to assess the usefulness of SSX family genes as cancer biomarkers for the detection of early-stage CC, the goal of this research was to validate the expressions of these genes in patients with CC and in matched patients with normal colons (NCs). Materials and Methods: RT-PCR assays were used to analyze the SSX1, SSX2, and SSX3 family gene expression levels in 30 neighboring NC and CC tissue samples from male Saudi patients. Epigenetic alterations were also tested in vitro using qRT-PCR analysis to determine whether reduced DNA methyltransferase or histone deacetylation could stimulate SSX gene expression via 5-aza-2'-deoxycytidine and trichostatin treatments, respectively. Results: The RT-PCR results showed SSX1 and SSX2 gene expression in 10% and 20% of the CC tissue specimens, respectively, but not in any of the NC tissue specimens. However, no SSX3 expression was detected in any of the examined CC or NC tissue samples. In addition, the qRT-PCR results showed significantly higher SSX1 and SSX2 expression levels in the CC tissue samples than in the NC tissue samples. The 5-aza-2'-deoxycytidine and trichostatin treatments significantly induced the mRNA expression levels of the SSX1, SSX2, and SSX3 genes in the CC cells in vitro. Conclusions: These findings suggest that SSX1 and SSX2 are potentially suitable candidate biomarkers for CC. Their expressions can be regulated via hypomethylating and histone deacetylase treatments, subsequently providing a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Turki M Alrubie
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Bader O Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahed F Alrefaei
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha M Arafah
- Pathology Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 Rue de la Terrasse, Local 1758, Québec, QC G1V 0A6, Canada
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Švec J, Šťastná M, Janečková L, Hrčkulák D, Vojtěchová M, Onhajzer J, Kříž V, Galušková K, Šloncová E, Kubovčiak J, Pfeiferová L, Hrudka J, Matěj R, Waldauf P, Havlůj L, Kolář M, Kořínek V. TROP2 Represents a Negative Prognostic Factor in Colorectal Adenocarcinoma and Its Expression Is Associated with Features of Epithelial-Mesenchymal Transition and Invasiveness. Cancers (Basel) 2022; 14:4137. [PMID: 36077674 PMCID: PMC9454662 DOI: 10.3390/cancers14174137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Trophoblastic cell surface antigen 2 (TROP2) is a membrane glycoprotein overexpressed in many solid tumors with a poor prognosis, including intestinal neoplasms. In our study, we show that TROP2 is expressed in preneoplastic lesions, and its expression is maintained in most colorectal cancers (CRC). High TROP2 positivity correlated with lymph node metastases and poor tumor differentiation and was a negative prognostic factor. To investigate the role of TROP2 in intestinal tumors, we analyzed two mouse models with conditional disruption of the adenomatous polyposis coli (Apc) tumor-suppressor gene, human adenocarcinoma samples, patient-derived organoids, and TROP2-deficient tumor cells. We found that Trop2 is produced early after Apc inactivation and its expression is associated with the transcription of genes involved in epithelial-mesenchymal transition, the regulation of migration, invasiveness, and extracellular matrix remodeling. A functionally similar group of genes was also enriched in TROP2-positive cells from human CRC samples. To decipher the driving mechanism of TROP2 expression, we analyzed its promoter. In human cells, this promoter was activated by β-catenin and additionally by the Yes1-associated transcriptional regulator (YAP). The regulation of TROP2 expression by active YAP was verified by YAP knockdown in CRC cells. Our results suggest a possible link between aberrantly activated Wnt/β-catenin signaling, YAP, and TROP2 expression.
Collapse
Affiliation(s)
- Jiří Švec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Monika Šťastná
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lucie Janečková
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Dušan Hrčkulák
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Martina Vojtěchová
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vítězslav Kříž
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Kateřina Galušková
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Šloncová
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Jan Hrudka
- Department of Pathology, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Medical Faculty, Charles University, Thomayer University Hospital, Ruská 87, 100 00 Praha, Czech Republic
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Lukáš Havlůj
- Department of General Surgery, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|