1
|
Mondal T, Chattopadhyay D, Saha Mondal P, Das S, Mondal A, Das A, Samanta S, Saha T. Fusobacterium nucleatum modulates the Wnt/β-catenin pathway in colorectal cancer development. Int J Biol Macromol 2025; 299:140196. [PMID: 39848378 DOI: 10.1016/j.ijbiomac.2025.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The Wnt/β-catenin signalling pathway normally maintains cellular and tissue homeostasis by regulating cellular differentiation and survival in a controlled manner. An aberrantly regulated Wnt/β-catenin signalling pathway can transform into an oncogenic pathway, which is associated with Colorectal cancer (CRC) as well as other cancers. CRC is one of the most frequently occurring gastrointestinal cancers worldwide. In CRC tissues, deregulation of Wnt/β-catenin pathway is observed, which indicates that this oncogenic pathway directly promotes CRC malignancy, cell migration, angiogenesis, chemoresistance, as well as shorter lifespan of a patient. Growing evidence suggests that human commensal microbes have a strong association with carcinogenesis, particularly the prevalence and high enrichment of Fusobacterium nucleatum in CRC progression. The Wnt/β-catenin pathway is one of the targeted pathways by F. nucleatum in CRC, where Fusobacterium adhesin attaches to E-cadherin to initiate infection. Also, Wnt/β-catenin pathway can be a potential target for the treatment of both CRC and F. nucleatum-positive CRC. Here, we discuss the underlying mechanisms of F. nucleatum-positive CRC development through modulation of Wnt/β-catenin signalling and its possibility for the application in targeted therapy of F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India; Department of Physiology, Katwa Collage, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Abhishek Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Urasawa T, Kawasaki N. Proteomic Approach Using DIA-MS Identifies Morphogenesis-Associated Proteins during Cardiac Differentiation of Human iPS Cells. ACS OMEGA 2025; 10:344-357. [PMID: 39829588 PMCID: PMC11740111 DOI: 10.1021/acsomega.4c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have potential applications in regenerative medicine. The quality by design (QbD) approach enables the efficiency and quality assurance in the manufacturing of hiPSC-derived products. It requires a molecular understanding of hiPSC differentiation throughout the differentiation process; however, information on cardiac differentiation remains limited. Proteins associated with the early stages of cardiac differentiation would be useful in the cardiomyocyte quality assessment. Here, we performed quantitative proteomics of hiPSC intermediate cells in the early phase of cardiac differentiation to better understand their molecular characteristics. Proteomic profiles suggested that day 5-7 cells were in the morphogenetic stage of cardiac differentiation. Trophoblast glycoprotein (TPBG) was the most up-regulated protein in the morphogenetic stage; it was previously shown to be up-regulated during differentiation into neural stem cells. Proteomics of TPBG-knockdown cells revealed that TPBG is involved in cell proliferation and is related to the cardiomyocyte yield, suggesting that it could be used as a marker in QbD development. Our approach helps us understand the molecular basis of hiPSC differentiation and could be a powerful tool in QbD-based manufacturing.
Collapse
Affiliation(s)
- Takaya Urasawa
- Biopharmaceutical and Regenerative
Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nana Kawasaki
- Biopharmaceutical and Regenerative
Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Hu CT, Lin CF, Shih HM, You RI, Wu WS, Chen YC. Blockade of Src signaling prevented stemness gene expression and proliferation of patient-derived gastric cancer stem cells. Tzu Chi Med J 2025; 37:65-71. [PMID: 39850393 PMCID: PMC11753518 DOI: 10.4103/tcmj.tcmj_133_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 08/07/2024] [Indexed: 01/25/2025] Open
Abstract
Objectives Gastric cancer (GC) is one of the most malignant tumors. Mounting studies highlighted gastric cancer stem cells (GCSCs) were responsible for the failure of treatment due to recurrence and drug resistance of advanced GC. However, targeted therapy against GCSC for improving GC prognosis suffered from lack of suitable models and molecular targets in terms of personalized medicine. To address this issue, two patient-derived GC cell lines SD209 and SD292 with cancer stem cells (CSCs) such as phenotype were isolated for establishing targeted therapy aiming at critical metastatic signaling in GC. Materials and Methods The primary patient-derived GCSCs were established from parts of GC tissues for characterization of stem cells (SCs) phenotype at both cellular and molecular levels. Western blot and Immunohistochemistry (IHC) were performed for identifying the deregulated signaling in GC tissue. Immunofluorescence was used for analyzing proliferating and SC markers in GCSC attached on fibroblast. Acridine orange and propidium iodide analyses were performed for the survival of GCSC in suspensions. Results In the culture environments of both SD209 and SD292, a lot of mesenchymal fibroblasts spread and crowd together on which a lot of cell clumps, suspected as GCSC, were firmly attached. In the IHC analysis, the GCSC stemness genes CD44 and Ep-CAM increased in tumor tissues of SD209, whereas Nanog-1 and octamer-binding transcription factor 3 (OCT-3) increased in that of SD292. By immunofluorescent analysis of a proliferation marker Ki67, the growth of SD209 and SD292 on mesenchymal fibroblasts was found to be reduced by dasatinib, the inhibitor of the Src kinase whose activity was upregulated in tumor tissues of both GCs. Dasatinib also suppressed the expression of Nanog-1 and OCT-3 in SD292 attached on mesenchymal fibroblasts. Conclusion This study may provide a base for targeted therapy against GCSCs/GCs progression in future preclinical/clinical settings.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Division of Gastroenterology, Department of Medicine, Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yen-Cheng Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
4
|
Nicoletto RE, Holdcraft CJ, Yin AC, Retzbach EP, Sheehan SA, Greenspan AA, Laugier CM, Trama J, Zhao C, Zheng H, Goldberg GS. Effects of cadherin mediated contact normalization on oncogenic Src kinase mediated gene expression and protein phosphorylation. Sci Rep 2024; 14:23942. [PMID: 39397108 PMCID: PMC11471763 DOI: 10.1038/s41598-024-75449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Nontransformed cells form heterotypic cadherin junctions with adjacent transformed cells to inhibit tumor cell growth and motility. Transformed cells must override this form of growth control, called "contact normalization", to invade and metastasize during cancer progression. Heterocellular cadherin junctions between transformed and nontransformed cells are needed for this process. However, specific mechanisms downstream of cadherin signaling have not been clearly elucidated. Here, we utilized a β-catenin reporter construct to determine if contact normalization affects Wnt signaling in transformed cells. β-catenin driven GFP expression in Src transformed mouse embryonic cells was decreased when cultured with cadherin competent nontransformed cells compared to transformed cells cultured with themselves, but not when cultured with cadherin deficient nontransformed cells. We also utilized a layered culture system to investigate the effects of oncogenic transformation and contact normalization on gene expression and oncogenic Src kinase mediated phosphorylation events. RNA-Seq analysis found that cadherin dependent contact normalization inhibited the expression of 22 transcripts that were induced by Src transformation, and increased the expression of 78 transcripts that were suppressed by Src transformation. Phosphoproteomic analysis of cells expressing a temperature sensitive Src kinase construct found that contact normalization decreased phosphorylation of 10 proteins on tyrosine residues that were phosphorylated within 1 h of Src kinase activation in transformed cells. Taken together, these results indicate that cadherin dependent contact normalization inhibits Wnt signaling to regulate oncogenic kinase activity and gene expression, particularly PDPN expression, in transformed cells in order to control tumor progression.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Cayla J Holdcraft
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Ariel C Yin
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Stephanie A Sheehan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Amanda A Greenspan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Christopher M Laugier
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Jason Trama
- Medical Diagnostic Laboratories, 2439 Kuser Rd, Hamilton Township, NJ, 08690, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Gary S Goldberg
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA.
| |
Collapse
|
5
|
Kim J, Joo JH, Kim J, Rim H, Shin JY, Choi YH, Min K, Lee SY, Jun SH, Kang NG. Platycladus orientalis Leaf Extract Promotes Hair Growth via Non-Receptor Tyrosine Kinase ACK1 Activation. Curr Issues Mol Biol 2024; 46:11207-11219. [PMID: 39451545 PMCID: PMC11505925 DOI: 10.3390/cimb46100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. In this study, we investigated the hair-growth-promoting effect of PO in cultured human dermal papilla cells (hDPCs). Platycladus orientalis leaf extract (POLE) was found to stimulate the proliferation of hDPCs. POLE with higher quercitrin concentration, especially, showed a high level of cellular viability. In the context of cellular senescence, POLE decreased the expression of p16 (CDKN2A) and p21(CDKN1A), which resulted in enhanced proliferation. In addition, growth factor receptors, FGFR1 and VEGFR2/3, and non-receptor tyrosine kinases, ACK1 and HCK, were significantly activated. In addition, LEF1, a transcription factor of Wnt/β-catenin signaling, was enhanced, but DKK1, an inhibitor of Wnt/β-catenin signaling, was downregulated by POLE treatment in cultured hDPCs. As a consequence, the expression of growth factors such as bFGF, KGF, and VEGF were also increased by POLE. We further investigated the hair-growth-promoting effect of topically administered POLE over a 12-week period. Our data suggest that POLE could support terminal hair growth by stimulating proliferation of DPCs and that enhanced production of growth factors, especially KGF, occurred as a result of tyrosine kinase ACK1 activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nae-Gyu Kang
- Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.H.J.); (J.K.); (H.R.); (J.y.S.); (Y.-H.C.); (K.M.); (S.Y.L.); (S.-H.J.)
| |
Collapse
|
6
|
Swaidan NT, Soliman NH, Aboughalia AT, Darwish T, Almeshal RO, Al-Khulaifi AA, Taha RZ, Alanany R, Hussein AY, Salloum-Asfar S, Abdulla SA, Abdallah AM, Emara MM. CCN3, POSTN, and PTHLH as potential key regulators of genomic integrity and cellular survival in iPSCs. Front Mol Biosci 2024; 11:1342011. [PMID: 38375508 PMCID: PMC10875024 DOI: 10.3389/fmolb.2024.1342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability. Our investigation had revealed three candidate genes CCN3, POSTN, and PTHLH that exhibited differential expression levels and potential roles in iPSC stability. Subsequent analyses identified various protein interactions for these candidate genes. POSTN, significantly upregulated in A53T-PD1 iPSC line, showed interactions with extracellular matrix components and potential involvement in Wnt signaling. CCN3, also highly upregulated, demonstrated interactions with TP53, CDKN1A, and factors related to apoptosis and proliferation. PTHLH, while upregulated, exhibited interactions with CDK2 and genes involved in cell cycle regulation. RT-qPCR validation confirmed elevated CCN3 and PTHLH expression in A53T-PD1 iPSCs, aligning with RNA-seq findings. These genes' roles in preserving pluripotency and cellular stability require further exploration. In conclusion, we identified CCN3, POSTN, and PTHLH as potential contributors to genomic integrity and pluripotency maintenance in iPSCs. Their roles in DNA repair, apoptosis evasion, and signaling pathways could offer valuable insights for enhancing reprogramming efficiency and sustaining pluripotency. Further investigations are essential to unravel the mechanisms underlying their actions.
Collapse
Affiliation(s)
- Nuha T. Swaidan
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nada H. Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T. Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ruba O. Almeshal
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Azhar A. Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Rania Alanany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdallah M. Abdallah
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Zou M, Song Q, Yin T, Xu H, Nie G. Vitamin D improves autoimmune diseases by inhibiting Wnt signaling pathway. Immun Inflamm Dis 2024; 12:e1192. [PMID: 38414312 PMCID: PMC10899798 DOI: 10.1002/iid3.1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE In this study, we investigated the development of the Wnt signaling pathway in vitamin D (VitD) to improve systemic lupus erythematosus in mice to breakthrough clinical treatment approaches. METHODS Body weight changes were recorded during rearing. Antinuclear antibodies (ANA), anti-dsDNA, and anti-snRNP were detected in the mouse serum using an enzyme-linked immunosorbent assay. Apoptosis of Th1 and Th2 immune cells in mice was detected using flow cytometry. Reverse transcription polymerase chain reaction was used to detect the expression of T-bet, GATA3, and Wnt3a mRNA in the spleens of each group. Western blot analysis was performed to detect the expression of Wnt1, p-β-catenin, β-catenin, glycogen synthase kinsase3β (GSK-3β), Wnt3a, c-myc, and cyclin D1 protein in mice spleens. β-catenin in mice spleen was visualized using immunohistochemistry. RESULTS VitD did not substantial reduce the body weight of MRL/LPR mice, whereas the inhibitor did. VitD notably decreased the concentrations of ANA, anti-double-stranded DNA, and anti-snRNP in the serum of MRL/LPR mice and alleviated apoptosis of Th1 and Th2 cells. VitD markedly increased the expression of T-bet and GATA mRNA in the spleen of MRL/LPR mice and consequently increased the levels of Wnt3a and β-catenin. Western blot analysis revealed that the levels of GSK-3β, p-β-catenin, Wnt1, Wnt3a, c-myc, and cyclin D1 could be reduced by VitD, compared with MRL/LPR. Immunohistochemistry demonstrated that the expression of β-catenin was the most pronounced in the spleen of MRL/LPR mice, and the expression level of β-catenin decreased substantially after VitD intervention. CONCLUSIONS VitD can further inhibit the nuclear translocation of β-catenin by downregulating the expression of Wnt ligands (Wnt1 and Wnt3a), which reduces the expression of the downstream target gene cyclin D1. Systemic lupus erythematosus in mice was improved by inhibiting the activation of Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Minshu Zou
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Qiuju Song
- Department of Obstetrics and GynecologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Taiyong Yin
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Hongtao Xu
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Guoming Nie
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| |
Collapse
|
8
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Mafi A, Rismanchi H, Malek Mohammadi M, Hedayati N, Ghorbanhosseini SS, Hosseini SA, Gholinezhad Y, Mousavi Dehmordi R, Ghezelbash B, Zarepour F, Taghavi SP, Asemi Z, Alimohammadi M, Mirzaei H. A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Front Oncol 2023; 13:1224138. [PMID: 37546393 PMCID: PMC10403753 DOI: 10.3389/fonc.2023.1224138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to multifocal development and distant metastasis resulting from late diagnosis. Consequently, new approaches to HCC diagnosis and treatment are required to reduce mortality rates. A large body of evidence suggests that non-coding RNAs (ncRNAs) are important in cancer initiation and progression. Cancer cells release many of these ncRNAs into the blood or urine, enabling their use as a diagnostic tool. Circular RNAs (CircRNAs) are as a members of the ncRNAs that regulate cancer cell expansion, migration, metastasis, and chemoresistance through different mechanisms such as the Wnt/β-catenin Signaling pathway. The Wnt/β-catenin pathway plays prominent roles in several biological processes including organogenesis, stem cell regeneration, and cell survival. Aberrant signaling of both pathways mentioned above could affect the progression and metastasis of many cancers, including HCC. Based on several studies investigated in the current review, circRNAs have an effect on HCC formation and progression by sponging miRNAs and RNA-binding proteins (RBPs) and regulating the Wnt/β-catenin signaling pathway. Therefore, circRNAs/miRNAs or RBPs/Wnt/β-catenin signaling pathway could be considered promising prognostic and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Hosseini
- Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Yin J, Ding F, Cheng Z, Ge X, Li Y, Zeng A, Zhang J, Yan W, Shi Z, Qian X, You Y, Ding Z, Ji J, Wang X. METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/β-catenin signaling. Cell Death Dis 2023; 14:417. [PMID: 37438359 DOI: 10.1038/s41419-023-05933-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in glioma initiation and progression. Glioma stem cells (GSCs) are essential for tumor initiation, maintenance, and therapeutic resistance. However, the biological functions and underlying mechanisms of lncRNAs in GSCs remain poorly understood. Here, we identified that LINC00839 was overexpressed in GSCs. A high level of LINC00839 was associated with GBM progression and radiation resistance. METTL3-mediated m6A modification on LINC00839 enhanced its expression in a YTHDF2-dependent manner. Mechanistically, LINC00839 functioned as a scaffold promoting c-Src-mediated phosphorylation of β-catenin, thereby inducing Wnt/β-catenin activation. Combinational use of celecoxib, an inhibitor of Wnt/β-catenin signaling, greatly sensitized GSCs to radiation. Taken together, our results showed that LINC00839, modified by METTL3-mediated m6A, exerts tumor progression and radiation resistance by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jianxing Yin
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China
| | - Fangshu Ding
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zhangchun Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xin Ge
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yanhui Li
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhiliang Ding
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China.
| | - Jing Ji
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China.
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
11
|
Premanand A, Reena Rajkumari B. Bioinformatic analysis of gene expression data reveals Src family protein tyrosine kinases as key players in androgenetic alopecia. Front Med (Lausanne) 2023; 10:1108358. [PMID: 37359019 PMCID: PMC10288522 DOI: 10.3389/fmed.2023.1108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Androgenetic alopecia (AGA) is a common progressive scalp hair loss disorder that leads to baldness. This study aimed to identify core genes and pathways involved in premature AGA through an in-silico approach. Methods Gene expression data (GSE90594) from vertex scalps of men with premature AGA and men without pattern hair loss was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the bald and haired samples were identified using the limma package in R. Gene ontology and Reactome pathway enrichment analyses were conducted separately for the up-regulated and down-regulated genes. The DEGs were annotated with the AGA risk loci, and motif analysis in the promoters of the DEGs was also carried out. STRING Protein-protein interaction (PPI) and Reactome Functional Interaction (FI) networks were constructed using the DEGs, and the networks were analyzed to identify hub genes that play could play crucial roles in AGA pathogenesis. Results and discussion The in-silico study revealed that genes involved in the structural makeup of the skin epidermis, hair follicle development, and hair cycle are down-regulated, while genes associated with the innate and adaptive immune systems, cytokine signaling, and interferon signaling pathways are up-regulated in the balding scalps of AGA. The PPI and FI network analyses identified 25 hub genes namely CTNNB1, EGF, GNAI3, NRAS, BTK, ESR1, HCK, ITGB7, LCK, LCP2, LYN, PDGFRB, PIK3CD, PTPN6, RAC2, SPI1, STAT3, STAT5A, VAV1, PSMB8, HLA-A, HLA-F, HLA-E, IRF4, and ITGAM that play crucial roles in AGA pathogenesis. The study also implicates that Src family tyrosine kinase genes such as LCK, and LYN in the up-regulation of the inflammatory process in the balding scalps of AGA highlighting their potential as therapeutic targets for future investigations.
Collapse
|
12
|
Bubin R, Uljanovs R, Strumfa I. Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087030. [PMID: 37108193 PMCID: PMC10138709 DOI: 10.3390/ijms24087030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first discovery of cancer stem cells (CSCs) in leukaemia triggered active research on stemness in neoplastic tissues. CSCs represent a subpopulation of malignant cells, defined by unique properties: a dedifferentiated state, self-renewal, pluripotency, an inherent resistance to chemo- and radiotherapy, the presence of certain epigenetic alterations, as well as a higher tumorigenicity in comparison with the general population of cancer cells. A combination of these features highlights CSCs as a high-priority target during cancer treatment. The presence of CSCs has been confirmed in multiple malignancies, including pancreatic ductal adenocarcinoma, an entity that is well known for its dismal prognosis. As the aggressive course of pancreatic carcinoma is partly attributable to treatment resistance, CSCs could contribute to adverse outcomes. The aim of this review is to summarize the current information regarding the markers and molecular features of CSCs in pancreatic ductal adenocarcinoma and the therapeutic options to remove them.
Collapse
Affiliation(s)
- Roman Bubin
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Romans Uljanovs
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
13
|
Paik SJ, Kim DJ, Jung SK. Preventive Effect of Pharmaceutical Phytochemicals Targeting the Src Family of Protein Tyrosine Kinases and Aryl Hydrocarbon Receptor on Environmental Stress-Induced Skin Disease. Int J Mol Sci 2023; 24:ijms24065953. [PMID: 36983027 PMCID: PMC10056297 DOI: 10.3390/ijms24065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most notable. Repetitive exposure to ultraviolet and particulate matter can cause chronic skin diseases such as skin inflammation, photoaging, and skin cancer. The abnormal activation of the Src family of protein tyrosine kinases (SFKs) and the aryl hydrocarbon receptor (AhR) in response to UV and/or PM exposure are involved in the development and aggravation of skin diseases. Phytochemicals, chemical compounds of natural plants, exert preventive effects on skin diseases through the regulation of various signaling pathways. Therefore, this review aims to highlight the efficacy of phytochemicals as potential nutraceuticals and pharmaceutical materials for the treatment of skin diseases, primarily by targeting SFK and AhR, and to explore the underlying mechanisms of action. Future studies are essential to validate the clinical potential for the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Katsumata Y, Shade LM, Hohman TJ, Schneider JA, Bennett DA, Farfel JM, Kukull WA, Fardo DW, Nelson PT. Multiple gene variants linked to Alzheimer's-type clinical dementia via GWAS are also associated with non-Alzheimer's neuropathologic entities. Neurobiol Dis 2022; 174:105880. [PMID: 36191742 PMCID: PMC9641973 DOI: 10.1016/j.nbd.2022.105880] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Lincoln M Shade
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose M Farfel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
15
|
Shao W, Liu L, Zheng F, Ma Y, Zhang J. The potent role of Src kinase-regulating glucose metabolism in cancer. Biochem Pharmacol 2022; 206:115333. [PMID: 36404485 DOI: 10.1016/j.bcp.2022.115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|