1
|
Sousa A, Besong OTO, Wachman EM, Taglauer ES, Beane JE, Kefella Y, Koo JS, Saia K, Jones HE, Zhang H. Placental transcriptome analysis in opioid-exposed versus non-opioid exposed pregnancies. Placenta 2025; 162:27-34. [PMID: 39983471 PMCID: PMC11908891 DOI: 10.1016/j.placenta.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
INTRODUCTION Opioid exposure during pregnancy may significantly alter gene expression in the placenta, potentially disrupting its function and influencing fetal brain development. These alterations may contribute to adverse outcomes such as neonatal opioid withdrawal syndrome (NOWS). In this study, we aim to systematically investigate the changes in placental gene expression associated with maternal opioid exposure to better understand the underlying molecular mechanisms and their implications for fetal health. METHODS Fresh placental tissue samples were collected from 18 opioid-exposed pregnancies and 26 non-opioid-exposed control pregnancies. Transcriptomic changes related to opioid exposure were assessed using RNA sequencing (RNA-seq). RESULTS Among the 16,172 genes detected, 55 showed differential expression (Padjusted < 0.25 or Punadjusted < 0.001) in opioid-exposed placentas. Gene Set Enrichment Analysis (GSEA) revealed that the differentially expressed genes were primarily associated with immune responses, neuronal development and function, as well as cell replication and division. Computational deconvolution using the PlacentaCellEnrich program identified significant enrichment of upregulated genes in decidual NK cells. Furthermore, integrative analysis of DNA methylation and gene expression showed an enrichment of differentially methylated genes among downregulated genes in opioid-exposed placentas. DISCUSSION Our findings suggest that opioid exposure during pregnancy may disrupt critical placental pathways, particularly those involved in immune responses. Future studies focusing on transcriptomic changes in specific placental cell types will be essential for fully understanding the structural and functional alterations in the placenta due to opioid exposure during pregnancy.
Collapse
Affiliation(s)
- Aneya Sousa
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Ojong Tabi Ojong Besong
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA.
| | | | - Jennifer E Beane
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yohana Kefella
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ji Sun Koo
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kelley Saia
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, MA, USA
| | - Hendree E Jones
- Department of Obstetrics & Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Vernovsky S, Herning A, Wachman EM. The role of genetics in neonatal abstinence syndrome. Semin Perinatol 2025; 49:152006. [PMID: 39613584 DOI: 10.1016/j.semperi.2024.152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Neonatal Abstinence Syndrome (NAS) after in-utero exposure to opioids remains a significant public health concern. NAS is a highly variable condition in which presentation and severity cannot be explained by clinical factors alone. Research in human subjects has identified both genetic and epigenetic associations with prenatal opioid exposure and NAS severity, including single nucleotide polymorphisms, DNA methylation differences, and gene expression modifications. Animal studies have also identified key gene pathways that are likely important contributors to NAS phenotype. The clinical significance of identified genetic associations with NAS are unclear and warrant further study to see how they could impact NAS management.
Collapse
Affiliation(s)
- Sarah Vernovsky
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States
| | - Ana Herning
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| |
Collapse
|
3
|
Ngo AL, Ahmad CM, Gharavi Alkhansari N, Nguyen L, Zhang H. Epigenetic Insights into Substance Use Disorder and Associated Psychiatric Conditions. Complex Psychiatry 2025; 11:12-36. [PMID: 40201238 PMCID: PMC11975344 DOI: 10.1159/000544912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Background Substance use disorder (SUD) is closely associated with epigenetic modifications that significantly impact mental health outcomes. Alcohol and drug misuse induce widespread changes in the epigenome and transcriptome of the central nervous system, disrupting critical processes such as reward signaling and emotional regulation. These alterations in epigenetic regulation and gene expression often persist even after substance cessation, potentially contributing to the onset or worsening of psychiatric conditions, including schizophrenia, depression, stress, and anxiety. Summary This review delves into key epigenetic mechanisms underlying SUD and its comorbid psychiatric disorders, with a focus on DNA methylation, histone modifications, and noncoding RNA regulation. Additionally, it examines the influence of environmental and biological factors on the epigenome and evaluates emerging epigenetic-based therapeutic strategies aimed at treating SUD and related psychiatric conditions. Key Messages Gaining a deeper understanding of the epigenetic mechanisms driving SUD and its associated psychiatric disorders is crucial for the development of effective therapeutic interventions. This review highlights the potential of epigenetic-based pharmacological strategies to mitigate the societal and personal burdens linked to SUD and its mental health complications.
Collapse
Affiliation(s)
- Ambrose Loc Ngo
- College of Medicine, Kansas City University, Kansas City, MO, USA
| | | | | | - Linda Nguyen
- College of Pharmacy, Western University, Pomona, CA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Townsel C, Truax B, Quaid M, Covault J, Dolinoy DC, Goodrich JM. Increased risk of severe neonatal opioid withdrawal syndrome in pregnancies with low placental ABCB1 DNA methylation. J Perinatol 2024:10.1038/s41372-024-02060-9. [PMID: 39033231 PMCID: PMC11743817 DOI: 10.1038/s41372-024-02060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Neonatal opioid withdrawal syndrome (NOWS) is unpredictable. We assessed relationships between placental DNA methylation with in-utero opioid exposure and NOWS severity. METHODS Secondary analysis of a prospective multicenter cohort study of pregnancies on methadone or buprenorphine, ≥34 weeks, singleton, 18 or greater. Placental biopsies were collected. Placental DNA methylation levels of ABCG1, ABCG2, CYP19A1, and HSD11B2 were quantified via pyrosequencing following bisulfite conversion. CYP19A1 mRNA levels and umbilical cord drug levels were determined by RT-qPCR and LC-MS respectively. Severe NOWS was diagnosed through Finnegan scoring. P value < 0.05 was significant. RESULTS Thirty-eight dyads were included. Promoter region methylation for placental ABCB1 was lower in severe NOWS compared to non-severe NOWS (p = 0.04). Placental CYP19A1 methylation was inversely related to CYP19A1 mRNA levels and associated with umbilical cord norbuprenorphine levels (p < 0.01), but not umbilical cord methadone levels. DISCUSSION Lower placental ABCB1 methylation was associated with severe NOWS. Higher placental CYP19A1 methylation correlated with higher umbilical cord norbuprenorphine levels.
Collapse
Affiliation(s)
- Courtney Townsel
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, MD, USA.
| | - Burnley Truax
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Margaret Quaid
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Covault
- Department of Psychiatry, University of Connecticut, Farmington, CT, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Mascarenhas M, Wachman EM, Chandra I, Xue R, Sarathy L, Schiff DM. Advances in the Care of Infants With Prenatal Opioid Exposure and Neonatal Opioid Withdrawal Syndrome. Pediatrics 2024; 153:e2023062871. [PMID: 38178779 PMCID: PMC10827648 DOI: 10.1542/peds.2023-062871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 01/06/2024] Open
Abstract
A significant number of advances have been made in the last 5 years with respect to the identification, diagnosis, assessment, and management of infants with prenatal opioid exposure and neonatal opioid withdrawal syndrome (NOWS) from birth to early childhood. The primary objective of this review is to summarize major advances that will inform the clinical management of opioid-exposed newborns and provide an overview of NOWS care to promote the implementation of best practices. First, advances with respect to standardizing the clinical diagnosis of NOWS will be reviewed. Second, the most commonly used assessment strategies are discussed, with a focus on presenting new quality improvement and clinical trial data surrounding the use of the new function-based assessment Eat, Sleep, and Console approach. Third, both nonpharmacologic and pharmacologic treatment modalities are reviewed, highlighting clinical trials that have compared the use of higher calorie and low lactose formula, vibrating crib mattresses, morphine compared with methadone, buprenorphine compared with morphine or methadone, the use of ondansetron as a medication to prevent the need for NOWS opioid pharmacologic treatment, and the introduction of symptom-triggered dosing compared with scheduled dosing. Fourth, maternal, infant, environmental, and genetic factors that have been found to be associated with NOWS severity are highlighted. Finally, emerging recommendations on postdelivery hospitalization follow-up and developmental surveillance are presented, along with highlighting ongoing and needed areas of research to promote infant and family well-being for families impacted by opioid use.
Collapse
Affiliation(s)
| | - Elisha M. Wachman
- Department of Pediatrics, Boston Medical Center, and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Iyra Chandra
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Rachel Xue
- Department of Family Medicine, Boston Medical Center, Boston, Massachusetts
| | - Leela Sarathy
- Newborn Medicine, MassGeneral for Children, Boston, Massachusetts
| | | |
Collapse
|
6
|
Borrelli KN, Wingfield KK, Yao EJ, Zamorano CA, Sena KD, Beierle JA, Roos MA, Zhang H, Wachman EM, Bryant CD. Decreased myelin-related gene expression in the nucleus accumbens during spontaneous neonatal opioid withdrawal in the absence of long-term behavioral effects in adult outbred CFW mice. Neuropharmacology 2023; 240:109732. [PMID: 37774943 PMCID: PMC10598517 DOI: 10.1016/j.neuropharm.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors.
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Av, Boston, MA, 02215, USA; T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA, 02118, USA
| | - Kelly K Wingfield
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Catalina A Zamorano
- Boston University's Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5th floor, Boston, MA, 02215, USA
| | - Katherine D Sena
- Boston University's Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5th floor, Boston, MA, 02215, USA
| | - Jacob A Beierle
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA, 02118, USA; Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Michelle A Roos
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Elisha M Wachman
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA, 02118, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Dumbhare O, Taksande A. Neonatal Abstinence Syndrome: An Insight Over Impact of Maternal Substance Use. Cureus 2023; 15:e47980. [PMID: 38034154 PMCID: PMC10686242 DOI: 10.7759/cureus.47980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Neonatal abstinence syndrome (NAS) highlights the intricate interplay between maternal substance use during pregnancy and the challenges neonates face from the distressing global opioid crisis. This comprehensive review captures the multilayered landscape of NAS, encircling its underlying mechanisms, epidemiology, diagnostic intricacies, clinical manifestations, continuing developmental impacts, treatment paradigms, and the crucial role of multidisciplinary care. The core pathophysiology of NAS involves the transplacental passage of addictive substances, activating chemical dependence in the maturing fetus, which is characterized by neurotransmitter dysregulation, neuroadaptations, and receptor sensitization. A diverse clinical presentation ranges from central nervous system hyperactivity and autonomic dysregulation to gastrointestinal manifestations, necessitating homogenous assessment tools such as the Finnegan Neonatal Abstinence Scoring System. The demand for a multilayered approach is essential for comprehensive management, involving pharmacological interventions like morphine or methadone and non-pharmacological strategies such as swaddling. The complications of NAS are not only limited to but are also well beyond infancy, leading to behavioral, longstanding cognitive, and socioemotional consequences. Addressing these developmental arcs demands decisive longitudinal monitoring and early interventions. NAS management is fundamentally multidisciplinary, requiring the teamwork of nurses, social workers, psychologists, pediatricians, and neonatologists. Apart from the clinical realm, managing the psychosocial needs of families traversing NAS requires resources and empathy. A crucial comprehensive approach is essential to confront the challenges and limitations of NAS. From early identification and prevention to longstanding support through pharmacological, non-pharmacological, and psychological channels, it creates a holistic structure that emerges as the basis for understanding the complicated relationship between maternal substance use and its impact on neonates. An amalgamation of community engagement, society, policy initiatives, and medical expertise is essential to mitigate the repercussions of NAS and adopt healthier outcomes for affected infants.
Collapse
Affiliation(s)
- Omkar Dumbhare
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Borrelli KN, Wingfield KK, Yao EJ, Zamorano CA, Sena KD, Beierle JA, Roos MA, Zhang H, Wachman EM, Bryant CD. Decreased myelin-related gene expression in the nucleus accumbens during spontaneous neonatal opioid withdrawal in the absence of long-term behavioral effects in adult outbred CFW mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552033. [PMID: 37609129 PMCID: PMC10441327 DOI: 10.1101/2023.08.04.552033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors. HIGHLIGHTS We replicated some NOWS model traits via 1x-daily morphine (P1-P14).We found a downregulation of myelination genes in nucleus accumbens on P15.There were no effects on learning/memory or reward sensitivity in adults.
Collapse
Affiliation(s)
- Kristyn N. Borrelli
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Av, Boston, MA 02215
- Boston University’s Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA 02118
| | - Kelly K. Wingfield
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian and Avedisian School of Medicine
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
| | - Catalina A. Zamorano
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Boston University’s Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5 floor, Boston, MA 02215
| | - Katherine D. Sena
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Boston University’s Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5 floor, Boston, MA 02215
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian and Avedisian School of Medicine
- Boston University’s Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA 02118
| | - Michelle A. Roos
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118
| | - Elisha M. Wachman
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118
| |
Collapse
|
9
|
Rompala G, Nagamatsu ST, Martínez-Magaña JJ, Nuñez-Ríos DL, Wang J, Girgenti MJ, Krystal JH, Gelernter J, Hurd YL, Montalvo-Ortiz JL. Profiling neuronal methylome and hydroxymethylome of opioid use disorder in the human orbitofrontal cortex. Nat Commun 2023; 14:4544. [PMID: 37507366 PMCID: PMC10382503 DOI: 10.1038/s41467-023-40285-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Opioid use disorder (OUD) is influenced by genetic and environmental factors. While recent research suggests epigenetic disturbances in OUD, this is mostly limited to DNA methylation (5mC). DNA hydroxymethylation (5hmC) has been widely understudied. We conducted a multi-omics profiling of OUD in a male cohort, integrating neuronal-specific 5mC and 5hmC as well as gene expression profiles from human postmortem orbitofrontal cortex (OUD = 12; non-OUD = 26). Single locus methylomic analysis and co-methylation analysis showed a higher number of OUD-associated genes and gene networks for 5hmC compared to 5mC; these were enriched for GPCR, Wnt, neurogenesis, and opioid signaling. 5hmC marks also showed a higher correlation with gene expression patterns and enriched for GWAS of psychiatric traits. Drug interaction analysis revealed interactions with opioid-related drugs, some used as OUD treatments. Our multi-omics findings suggest an important role of 5hmC and reveal loci epigenetically dysregulated in OFC neurons of individuals with OUD.
Collapse
Affiliation(s)
| | - Sheila T Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Diana L Nuñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Jiawei Wang
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- VA Connecticut Healthcare System, West Haven, CT, USA.
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA.
| |
Collapse
|
10
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Nagamatsu ST, Rompala G, Hurd YL, Núñez-Rios DL, Montalvo-Ortiz JL. CpH methylome analysis in human cortical neurons identifies novel gene pathways and drug targets for opioid use disorder. Front Psychiatry 2023; 13:1078894. [PMID: 36745154 PMCID: PMC9892724 DOI: 10.3389/fpsyt.2022.1078894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction DNA methylation (DNAm), an epigenetic mechanism, has been associated with opioid use disorder (OUD) in preclinical and human studies. However, most of the studies have focused on DNAm at CpG sites. DNAm at non-CpG sites (mCpHs, where H indicates A, T, or C) has been recently shown to have a role in gene regulation and to be highly abundant in neurons. However, its role in OUD is unknown. This work aims to evaluate mCpHs in the human postmortem orbital frontal cortex (OFC) in the context of OUD. Methods A total of 38 Postmortem OFC samples were obtained from the VA Brain Bank (OUD = 12; Control = 26). mCpHs were assessed using reduced representation oxidative bisulfite sequencing in neuronal nuclei. Differential analysis was performed using the "methylkit" R package. Age, ancestry, postmortem interval, PTSD, and smoking status were included as covariates. Significant mCpHs were set at q-value < 0.05. Gene Ontology (GO) and KEGG enrichment analyses were performed for the annotated genes of all differential mCpH loci using String, ShinyGO, and amiGO software. Further, all annotated genes were analyzed using the Drug gene interaction database (DGIdb). Results A total of 2,352 differentially methylated genome-wide significant mCpHs were identified in OUD, mapping to 2,081 genes. GO analysis of genes with differential mCpH loci showed enrichment for nervous system development (p-value = 2.32E-19). KEGG enrichment analysis identified axon guidance and glutamatergic synapse (FDR 9E-4-2.1E-2). Drug interaction analysis found 3,420 interactions between the annotated genes and drugs, identifying interactions with 15 opioid-related drugs, including lofexidine and tizanidine, both previously used for the treatment of OUD-related symptoms. Conclusion Our findings suggest a role of mCpHs for OUD in cortical neurons and reveal important biological pathways and drug targets associated with the disorder.
Collapse
Affiliation(s)
- Sheila T. Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut (VA CT) Healthcare Center, West Haven, CT, United States
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, West Haven, CT, United States
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yasmin L. Hurd
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Diana L. Núñez-Rios
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut (VA CT) Healthcare Center, West Haven, CT, United States
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, West Haven, CT, United States
| | - Janitza L. Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut (VA CT) Healthcare Center, West Haven, CT, United States
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, West Haven, CT, United States
| |
Collapse
|