1
|
Sun X, Qu S, Zhou F, Shi F, Wu Y, Gu L, Liu M, Bian Z, Shi L, Liu Z, Liu Y, Zen K. Monocytes serve as Shiga toxin carriers during the development of hemolytic uremic syndrome. Cell Mol Biol Lett 2025; 30:13. [PMID: 39871175 PMCID: PMC11773931 DOI: 10.1186/s11658-025-00689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Shiga toxin (Stx)-induced hemolytic uremic syndrome (HUS) poses a life-threatening complication for which a definitive treatment remains elusive. To exert its cytotoxic effect on renal cells, Stx must be delivered from the infected intestines to the kidney. However, the mechanism underlying Stx delivery remains unclear. Here we pinpoint monocytes as the primary carriers responsible for transporting Stx2 to the renal region. Through single-cell sequencing analysis of Stx2-B-bound peripheral white blood cells sorted by flow cytometry, we observe that nearly all monocytes exhibit strong Stx2-B binding, whereas less than 10% of neutrophils are associated with Stx2-B, albeit with a lower affinity. Further examination of the single-cell dataset and cell binding assays suggest that monocytes likely bind to Stx2-B through the Toll-like receptor 4. Remarkably, Stx-laden monocytes demonstrate their ability to transport Stx2 to human renal glomerular endothelial cells (HRGEC), subsequently inducing apoptosis in HRGEC. In a mouse model of Stx1/2-positive EDL933 infection-induced HUS, the presence of Stx2-positive monocytes in peripheral blood and infiltrated kidney tissues was observed. Finally, depleting monocytes through the usage of a CD14 neutralizing antibody or blocking monocyte chemotaxis via inhibition of CCL2 notably mitigates kidney injury and dysfunction caused by lipopolysaccharide (LPS)/Stx2 treatment. Our findings unveil the pivotal role of monocytes in Stx delivery during STEC infection and offer a promising therapeutic approach for Stx-induced HUS.
Collapse
Affiliation(s)
- Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shuang Qu
- Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, Jiangsu, China
| | - Fenglian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Fujie Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yunfei Wu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Lin Gu
- Jiangsu Provincial Central for Disease Prevention and Control, Nanjing, 210009, Jiangsu, China
| | - Minghui Liu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Zhen Bian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Lei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
2
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 PMCID: PMC7617515 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| |
Collapse
|
3
|
Yang D, Liang H, Zhu X, Li B, Li C, Hu G, Du X, Dang G, Song Y, Ma X, Zhang P, Chen T, Liu B, Yan L, Pan CS, Sun K, Huo X, Feng Y, Wang X, Ai D, Han JY, Feng J. Farnesoid X Receptor Protects Murine Lung against IL-6-promoted Ferroptosis Induced by Polyriboinosinic-Polyribocytidylic Acid. Am J Respir Cell Mol Biol 2024; 70:364-378. [PMID: 38300138 DOI: 10.1165/rcmb.2023-0172oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024] Open
Abstract
Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.
Collapse
Affiliation(s)
- Dongmin Yang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Hongbiao Liang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xiangrui Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Bochuan Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; and
| | - Guizimeng Hu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xing Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuwei Song
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peng Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Tianqi Chen
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xinmei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Juan Feng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Zhao S, Sun Y, Wu X, Yang Y, Fan K, Hu K, Qin Y, Li K, Lin L, Chen K, Ma Y, Zhu M, Liu G, Zhang L. Sirtuin 1 activator alleviated lethal inflammatory injury via promotion of autophagic degradation of pyruvate kinase M2. Front Pharmacol 2023; 14:1092943. [PMID: 37101542 PMCID: PMC10123272 DOI: 10.3389/fphar.2023.1092943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Upregulation of pyruvate kinase M2 (PKM2) is critical for the orchestration of metabolism and inflammation in critical illness, while autophagic degradation is a recently revealed mechanism that counter-regulates PKM2. Accumulating evidence suggests that sirtuin 1 (SIRT1) function as a crucial regulator in autophagy. The present study investigated whether SIRT1 activator would downregulate PKM2 in lethal endotoxemia via promotion of its autophagic degradation. The results indicated that lethal dose of lipopolysaccharide (LPS) exposure decreased the level of SIRT1. Treatment with SRT2104, a SIRT1 activator, reversed LPS-induced downregulation of LC3B-II and upregulation of p62, which was associated with reduced level of PKM2. Activation of autophagy by rapamycin also resulted in reduction of PKM2. The decline of PKM2 in SRT2104-treated mice was accompanied with compromised inflammatory response, alleviated lung injury, suppressed elevation of blood urea nitrogen (BUN) and brain natriuretic peptide (BNP), and improved survival of the experimental animals. In addition, co-administration of 3-methyladenine, an autophagy inhibitor, or Bafilomycin A1, a lysosome inhibitor, abolished the suppressive effects of SRT2104 on PKM2 abundance, inflammatory response and multiple organ injury. Therefore, promotion of autophagic degradation of PKM2 might be a novel mechanism underlying the anti-inflammatory benefits of SIRT1 activator.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yili Sun
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xicheng Wu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kerui Fan
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yasha Qin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kexin Li
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yuhua Ma
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay, China
| | - Min Zhu
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay, China
| | - Gang Liu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Gang Liu, ; Li Zhang,
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
- *Correspondence: Gang Liu, ; Li Zhang,
| |
Collapse
|