1
|
Jiang G, Ameer K, Ramachandraiah K, Feng X, Jin X, Tan Q, Huang X. Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods. Foods 2025; 14:1196. [PMID: 40238366 PMCID: PMC11989129 DOI: 10.3390/foods14071196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluated the structural, physicochemical, and functional characteristics of blueberry residue dietary fiber (DF) extracted by wet ball milling (WB) and cross-linking (C) treatments. The particle size of WB-DF showed a significant decreasing trend (p ≤ 0.05) compared to that of C-DF and blueberry residue. Scanning electron microscopy (SEM) demonstrated that WB treatment unfolded the flaky structure of DF and caused more pores to occur. The results showed that the modifications of WB increased the release of active groups and enhanced the hydration and adsorption capacities. X-ray diffraction (XRD) analysis showed the highest crystallinity observed for C-DF, resulting in the increased thermal stability of C-DF. The molar ratios of monosaccharides were also influenced by different modification techniques. In addition, WB-DF showed the lowest ζ-potential and highest viscosity among all samples. Conclusively, DF extracted by WB treatment exhibited remarkable application potential in the functional food industry.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Karna Ramachandraiah
- Department of Biological Sciences, College of Arts & Sciences, University of North Florida, Jacksonville, FL 32224, USA;
| | - Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Xiaolu Jin
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Qiaolin Tan
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| | - Xianfeng Huang
- School of Public Health, Jilin Medical University, Jilin 132013, China; (X.F.); (X.J.); (Q.T.); (X.H.)
| |
Collapse
|
2
|
Gold S, Park S, Katz J, McClave S, Martindale R. The Evolving Guidelines on Fiber Intake for Patients with Inflammatory Bowel Disease; From Exclusion to Texture Modification. Curr Gastroenterol Rep 2025; 27:23. [PMID: 40131665 DOI: 10.1007/s11894-025-00975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW Fiber restriction has been a long-standing strategy for patients with inflammatory bowel disease (IBD), ostensibly to improve symptoms and reduce complications. Fiber though has a well-documented trophic effect on gut barrier defenses and the intestinal microbiome. This report discusses how texture modification may allow the safe and effective provision of much needed fiber to this patient population. RECENT FINDINGS The effect of dietary fiber is characterized by maintenance of gut integrity, support of the microbiome, and immune modulation. Low-fiber diets in patients with IBD result in greater dysbiosis, intestinal permeability, and mucosal inflammation. New recommendations from international IBD guidelines now promote texture modification to allow for inclusion of fiber in certain conditions of IBD. For patients flaring with acute inflammation, or those with ileostomy, intestinal stricture, or ileal pouch anastomosis, continued fiber intake with softer textures and mechanical modification should be prioritized when feasible. For patients recovering from surgery, diet advancement should include reintroduction of soluble and insoluble fibers, while those in remission should have little or no dietary restrictions. Texture modification of high fiber foods may be accomplished by a variety of strategies involved in the selection, preparation, and cooking of fruits and vegetables. Greater effort to include dietary soluble and insoluble fiber should result in clinical benefit to the IBD patient, avoiding the adverse consequences of a low-fiber diet.
Collapse
Affiliation(s)
- Stephanie Gold
- The Henry d. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Sunhee Park
- Irvine, School of Medicine, University of California, Orange, CA, USA
| | | | - Stephen McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
3
|
Mattar L, Thalib HI, Alnuwaimi M, Alsaadi H, Allouji HA, Alyafei J, Alshowiman L, Alsobyani N, Hassan FES. Challenges of concurrent HIV infection in the course and management of Crohn's disease. J Med Life 2025; 18:171-178. [PMID: 40291934 PMCID: PMC12022739 DOI: 10.25122/jml-2024-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 04/30/2025] Open
Abstract
Crohn's disease (CD) is a chronic transmural bowel inflammation with a multifactorial etiology involving genetic predisposition and immune dysregulation in response to environmental triggers. In patients with human immunodeficiency virus (HIV), an already compromised immune system further complicates the progression and management of CD, creating unique therapeutic challenges. Probiotics have recently gained attention as a potential therapeutic option for CD, especially due to their role in modulating the gut microbiota. However, their effectiveness in patients with HIV, especially in enhancing and maintaining remissions, remains underexplored. This review aimed to examine how HIV infection influences the course of inflammatory bowel disease (IBD) and its impact on CD management strategies. A systematic literature search was conducted using Google Scholar, PubMed, Springer, and Web of Science to identify studies on patients with HIV and CD. HIV infection significantly alters the progression and management of CD due to its impact on the immune system. The immunosuppressed state of patients with HIV can complicate both the diagnosis and treatment of CD, often requiring adjustments in therapeutic approaches, necessitating a careful, tailored approach.
Collapse
Key Words
- AAD, Antibiotic-Associated Diarrhea
- AIDS, Acquired Immunodeficiency Syndrome
- AIEC, Adherent-Invasive Escherichia Coli
- APC, Antigen-Presenting Cells
- ART, Antiretroviral Therapy
- CARD15, Caspase Recruitment Domain–Containing Protein 15
- CARD9, Caspase Recruitment Domain–Containing Protein 9
- CAZymes, Carbohydrate-Active Enzymes
- CCL4, C-C Motif Chemokine Ligand 4
- CCR5, C-C Chemokine Receptor Type 5
- CD, Cluster Of Differentiation
- CD, Crohn’s Disease
- CRC, Colorectal Cancer
- CXCR4, C-X-C Chemokine Receptor Type 4
- Crohn’s disease
- DC, Dendritic Cells
- DC-SIGN, Dendritic Cell–Specific Intercellular Adhesion Molecule-3–Grabbing Non-Integrin
- ERS, Endoplasmic Reticulum Stress
- FMT, Fecal Microbiota Transplantation
- FVT, Fecal Virome Transplantation
- GIT, Gastrointestinal Tract
- HIV
- HIV, Human Immunodeficiency Virus
- IBD, Inflammatory Bowel Disease
- IFABP, Intestinal Fatty Acid–Binding Protein
- IL, Interleukin
- ILCs, Innate Lymphoid Cells
- MALT, Mucosa-Associated Lymphoid Tissue
- MAMP, Microbe-Associated Molecular Pattern
- NF-κB, Nuclear Factor Kappa B
- NK, Natural Killer Cells
- NOD2, Nucleotide-Binding Oligomerization Domain–Containing Protein 2
- NOS, Nitric Oxide Synthase
- PPAR-γ, Peroxisome Proliferator-Activated Receptor Gamma
- PRR, Pattern Recognition Receptor
- SCFA, Short-Chain Fatty Acids
- SLE, Systemic Lupus Erythematosus
- TGF-β, Transforming Growth Factor–β
- TLR, Toll-Like Receptor
- TNF-α, Tumor Necrosis Factor–α
- Th17, T Helper 17 Cells
- UC, Ulcerative Colitis
- gut microbiota
- pDC, Plasmacytoid Dendritic Cells
- probiotics
- sCD14, Soluble CD14
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fatma El Sayed Hassan
- Medical Physiology Department, Kasr Alainy Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Tian S, Zhang M, Chen Y, Sun H, Li Q, Yang Y, Guo A. Dietary Pea Fibre Improves Obesity, Intestinal Barrier, Reproductive Performance, Offspring Health of Parent Mice Deprived of Dietary Fibre. Animals (Basel) 2025; 15:655. [PMID: 40075937 PMCID: PMC11898131 DOI: 10.3390/ani15050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
As a potential high-quality protein food, peas are enriched in protein and fibre. This study investigated the judicious utilisation of pea fibre and the impact of maternal diet on offspring health in mice. Thirty-six eight-week-old, female, healthy C57BL/6J mice were divided into three groups at random (n = 12 per group): deprived fibre diet (DFD), 5% pea fibre diet (LFD), and 10% pea fibre diet (HFD). After weaning, the offspring mice were fed the same diet as their parents; the respective corresponding groups were DFDO, LFDO, and HFDO. Fibre-deprived mice exhibited decreased average litter size, diminished reproductive performance, increased body weight, and intestinal barrier damage. Mice fed pea fibre showed increased litter size, improved fertility rate of parental mice, regulated body weight, and maintained a normal intestinal barrier morphology without inflammatory cell infiltration. Furthermore, 16S rRNA analysis revealed that pea fibre enhanced diversity and richness of the intestinal microbiota and altered microbial composition. Notably, changes in Lactobacillus and Parabacteroides in fibre-deprived mice suggest that pea fibre might be a potentially beneficial option for neuropsychiatric diseases. In conclusion, supplementing the diet of maternal mice with pea fibre can mitigate the aforementioned issues in their offspring. This study emphasised the crucial role of maternal fibre consumption in increasing litter size, promoting gut health in offspring, and reducing susceptibility to obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajin Yang
- College of Biological Science and Food Engineering, Southwest Forestry University, No. 300 Bailongsi, Panlong District, Kunming 650224, China; (S.T.); (M.Z.); (Y.C.); (H.S.); (Q.L.)
| | - Aiwei Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, No. 300 Bailongsi, Panlong District, Kunming 650224, China; (S.T.); (M.Z.); (Y.C.); (H.S.); (Q.L.)
| |
Collapse
|
5
|
Yin W, Liu M, Jin Z, Hao Z, Liu C, Liu J, Liu H, Zheng M, Cai D. Ameliorative effects of insoluble dietary fiber and its bound polyphenols from adzuki bean seed coat on acute murine colitis induced by DSS: The inflammatory response, intestinal barrier and gut microbiota. Int J Biol Macromol 2025; 286:138343. [PMID: 39638184 DOI: 10.1016/j.ijbiomac.2024.138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The incidence of ulcerative colitis (UC) is closely associated with dietary fiber (DF) intake. This study aims to evaluate the ameliorative effects of insoluble dietary fiber from adzuki bean seed coat (AIDF) on dextran sulfate sodium (DSS)-induced UC in mice, both with and without bound polyphenols (BPs). We employed a model based on the "remove/backfill" of components. Compared to dephenolized dietary fiber (AIDF-DF) and AIDF-DF with replaced BPs (AIDF-BP), AIDF was found to effectively reduce the splenic index, alleviate colonic histopathological damage, lower serum levels of inflammatory mediators (TNF-α, IL-1β, IFN-γ, IL-6), decrease activities of LPS, DAO, MPO, and iNOS, regulate intestinal tight junction (TJ) mRNA and protein expression, and restore the integrity of the colonic epithelial cell barrier. AIDF mitigated the inflammatory response in UC by inhibiting the TLR4/NF-κB inflammatory signaling pathway. It increased the abundance of beneficial gut microbiota (e.g., Akkermansia, Verrucomicrobiota) while reducing the abundance of harmful bacteria (e.g., Proteobacteria), thereby alleviating intestinal disturbances in DSS-induced colitis in mice. In conclusion, the presence of BPs in AIDF plays a critical role in attenuating DSS-induced UC in mice.
Collapse
Affiliation(s)
- Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Zhina Hao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chenyu Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
6
|
Panneerselvan L, Raghuraman Rengarajan HJ, Kandaiah R, Bhagwat-Russell G, Palanisami T. Fibrous foes: First report on insidious microplastic contamination in dietary fiber supplements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125248. [PMID: 39510303 DOI: 10.1016/j.envpol.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Regular consumption of health supplements to balance dietary intake has gained popularity worldwide. One such supplement that has gained popularity among consumers is dietary fibers. Microplastic (MPs) contamination in various food products is being reported worldwide. However, there is a paucity of understanding of the occurrence of MPs in dietary supplements. This study addresses this gap by investigating the degree of MPs contamination in dietary fiber supplements. Nine commonly consumed (powder and gummy-based) over-the-counter dietary fiber supplements in Australia were tested in this study. Microscopic examination revealed the presence of MPs fibers and fragments in all the tested products. Further categorization showed that MPs particles were of various colours, including black, blue, red, green, and white. The order of polymer abundance was Polyamide > Polydiallyl Phthalate > polyethylene polypropylene diene > Polyurethane = Polyethylene terephthalate > Polyethylene = Ethylene acrylic acid copolymer. Among the supplements, powder-based samples had higher MPs (at the adult dosage suggested by the manufacturer) than gummy-based product. The average predicted ingestion of microplastics from these supplements (all nine samples) was 5.89 ± 2.89 particles day-1. The dietary exposure for children and adults ranged from 0.1-0.48 and 0.18-4.08 particles day-1, respectively. Based on the microplastic contamination factor (MCF), among the nine samples tested, 69.81% exhibited a moderate level, while 20.76% showed a significant level of microplastic contamination. The polymer risk index (pRi) indicates products with very high and high-risk categories. The possible sources of MPs contamination in the products were studied. To our knowledge, this is the first study to record and quantify the presence of MPs in dietary fiber supplements, which is a direct source of MPs exposure to humans via., ingestion.
Collapse
Affiliation(s)
- Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Haryni Jayaradhika Raghuraman Rengarajan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
7
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Ferenc K, Filip R. Mechanisms of Insulin Signaling as a Potential Therapeutic Method in Intestinal Diseases. Cells 2024; 13:1879. [PMID: 39594627 PMCID: PMC11593555 DOI: 10.3390/cells13221879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Gastrointestinal diseases are becoming a growing public health problem. One of them is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). The incidence of IBD is increasing in developing countries and declining in developed countries, affecting people of all ages. Researchers have been exploring new treatment options including insulin signaling pathways in the inflammation of the gastrointestinal tract. It seems that a better understanding of the mechanism of IGF-1, GLP-1 and TL1A on the gut microbiota and inflammation may provide new advances in future therapeutic strategies for patients with IBD, but also other intestinal diseases. This review aims to synthesize insights into the effects of GLP, IGF and anti-TL1A on inflammation and the gut microbiota, which may enable their future use in therapy for people with intestinal diseases.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
8
|
Moya AMTM, Alexandrino TD, Morari J, Reguengo LM, Velloso LA, Leal RF, Junior SB, Pereira APA, Pastore GM, Bicas JL, Cazarin CBB. The Consumption of the Fibrous Fraction of Solanum lycocarpum St. Hil. Does Not Preserve the Intestinal Mucosa in TNBS-Induced Rats. Foods 2024; 13:2949. [PMID: 39335878 PMCID: PMC11431493 DOI: 10.3390/foods13182949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Solanum lycocarpum St. Hil. is considered a natural anti-inflammatory. In traditional medicine, it is used to reduce cholesterol levels in the treatment of obesity. Foods capable of conferring a protective and nutritious effect have been used to prevent or attenuate the clinical symptoms of inflammatory bowel diseases. Ulcerative colitis is a multifactorial inflammatory bowel disease. This study investigated the impact of the consumption of the fibrous fraction (FF) and resistant starch (RS) of fruta-do-lobo in an experimental model of colitis induced with the use 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. The different colitis groups all experienced decreased weight gain, which could be linked to the inflammatory process (p = 0.603). Additionally, the experimental model led to increased oxidative stress, higher levels of pro-inflammatory cytokines, and the elevated gene expression of these cytokines. Despite this, consuming the fibrous fraction of fruta-do-lobo (RS and FF) did not appear to protect the animals against the inflammatory process. Regarding the expression of TNF-α, only the group treated with the drug mesalamine had a reduced serum level of this inflammatory marker (p = 0.03). Our results showed that the diet containing RS and FF did not protect the intestinal mucosa against TNBS inflammation. New studies on the variation in the time of consumption or the supplemented dose of fruta-do-lobo fibers could help to elucidate their effects in protecting the mucosa.
Collapse
Affiliation(s)
- Amanda Maria Tomazini Munhoz Moya
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Thaís Dolfini Alexandrino
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Joseane Morari
- School of Medical Sciences, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Campinas 13083-887, São Paulo, Brazil; (J.M.); (L.A.V.); (R.F.L.)
| | - Livia Mateus Reguengo
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Licio Augusto Velloso
- School of Medical Sciences, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Campinas 13083-887, São Paulo, Brazil; (J.M.); (L.A.V.); (R.F.L.)
| | - Raquel Franco Leal
- School of Medical Sciences, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Campinas 13083-887, São Paulo, Brazil; (J.M.); (L.A.V.); (R.F.L.)
| | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos 13566-590, São Paulo, Brazil;
| | - Ana Paula Aparecida Pereira
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
- Faculty of Nutrition, Federal University of Mato Grosso, Avenida Fernando Correa da Costa, 2367, Boa Esperança, Cuiabá 78068-600, Mato Grosso, Brazil
| | - Glaucia Maria Pastore
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Juliano Lemos Bicas
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| | - Cinthia Baú Betim Cazarin
- School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, São Paulo, Brazil; (A.M.T.M.M.); (T.D.A.); (L.M.R.); (A.P.A.P.); (G.M.P.); (J.L.B.)
| |
Collapse
|
9
|
Boukhers I, Domingo R, Septembre-Malaterre A, Antih J, Silvestre C, Petit T, Kodja H, Poucheret P. Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves. Nutrients 2024; 16:3023. [PMID: 39275338 PMCID: PMC11397558 DOI: 10.3390/nu16173023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Manihot esculenta (cassava) roots is a major food crop for its energy content. Leaves contain nutrients and demonstrate biological properties but remain undervalorized. In order to develop a bioguided optimization of cassava nutrition-health properties, we compared the phytochemistry and bioactive potential of cassava root flour extract (CF) with cassava flour extract enriched with 30% leaves powder (CFL). Cassava flour supplementation impact was explored on flour composition (starch, fiber, carotenoids, phenolic compounds), in vivo glycemic index, and bioactivity potential using macrophage cells. We assessed the impact of cassava flour supplementation on free radicals scavenging and cellular production of pro-inflammatory mediators. CFL showed higher levels of fiber, carotenoids, phenolic compounds, and lower glycemic index. Significantly higher bioactive properties (anti-inflammatory and antioxidant) were recorded, and inhibition of cytokines production has been demonstrated as a function of extract concentration. Overall, our results indicate that enrichment of cassava flour with leaves significantly enhances its nutrition-health and bioactive potential. This bioguided matrix recombination approach may be of interest to provide prophylactic and therapeutic dietary strategy to manage malnutrition and associated chronic non-communicable diseases characterized by low-grade inflammation and unbalanced redox status. It would also promote a more efficient use of available food resources.
Collapse
Affiliation(s)
- Imane Boukhers
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Axelle Septembre-Malaterre
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Julien Antih
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Charlotte Silvestre
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Thomas Petit
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, ChemBioPro (EA2212), Université de La Réunion, 15 Avenue René Cassin, 97490 Sainte-Clotilde, France
| | - Hippolyte Kodja
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Patrick Poucheret
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| |
Collapse
|
10
|
Naqvi HA, Delungahawatta T, Atarere JO, Bandaru SK, Barrow JB, Mattar MC. Evaluation of online chat-based artificial intelligence responses about inflammatory bowel disease and diet. Eur J Gastroenterol Hepatol 2024; 36:1109-1112. [PMID: 38973528 DOI: 10.1097/meg.0000000000002815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
INTRODUCTION The USA has the highest age-standardized prevalence of inflammatory bowel disease (IBD). Both genetic and environmental factors have been implicated in IBD flares and multiple strategies are centered around avoiding dietary triggers to maintain remission. Chat-based artificial intelligence (CB-AI) has shown great potential in enhancing patient education in medicine. We evaluate the role of CB-AI in patient education on dietary management of IBD. METHODS Six questions evaluating important concepts about the dietary management of IBD which then were posed to three CB-AI models - ChatGPT, BingChat, and YouChat three different times. All responses were graded for appropriateness and reliability by two physicians using dietary information from the Crohn's and Colitis Foundation. The responses were graded as reliably appropriate, reliably inappropriate, and unreliable. The expert assessment of the reviewing physicians was validated by the joint probability of agreement for two raters. RESULTS ChatGPT provided reliably appropriate responses to questions on dietary management of IBD more often than BingChat and YouChat. There were two questions that more than one CB-AI provided unreliable responses to. Each CB-AI provided examples within their responses, but the examples were not always appropriate. Whether the response was appropriate or not, CB-AIs mentioned consulting with an expert in the field. The inter-rater reliability was 88.9%. DISCUSSION CB-AIs have the potential to improve patient education and outcomes but studies evaluating their appropriateness for various health conditions are sparse. Our study showed that CB-AIs have the ability to provide appropriate answers to most questions regarding the dietary management of IBD.
Collapse
Affiliation(s)
- Haider A Naqvi
- Department of Medicine, Medstar Union Memorial Hospital
- Department of Medicine, Medstar Franklin Square Medical Center
| | - Thilini Delungahawatta
- Department of Medicine, Medstar Union Memorial Hospital
- Department of Medicine, Medstar Franklin Square Medical Center
| | - Joseph O Atarere
- Department of Medicine, Medstar Union Memorial Hospital
- Department of Medicine, Medstar Franklin Square Medical Center
| | | | - Jasmine B Barrow
- Department of Gastroenterology, Medstar Franklin Square Medical Center, Baltimore, Maryland
| | - Mark C Mattar
- Department of Gastroenterology, MedStar Georgetown University Hospital
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Cao J, Qin L, Zhang L, Wang K, Yao M, Qu C, Miao J. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice. Int J Biol Macromol 2024; 267:131214. [PMID: 38580029 DOI: 10.1016/j.ijbiomac.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 μm and 97.350 μm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.
Collapse
Affiliation(s)
- Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
12
|
Loy L, Petronio L, Marcozzi G, Bezzio C, Armuzzi A. Dietary Fiber in Inflammatory Bowel Disease: Are We Ready to Change the Paradigm? Nutrients 2024; 16:1108. [PMID: 38674799 PMCID: PMC11053563 DOI: 10.3390/nu16081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Accumulating evidence from pre-clinical and clinical studies demonstrate the benefit of dietary fibers for inflammatory bowel disease (IBD). However, the majority of patients avoid or limit their consumption to manage their symptoms during the active and remission phases, although limited research supports these long-term dietary habits. Although recent evidence-based dietary guidelines highlight the importance of promoting an adequate intake of dietary fiber in IBD patients, intervention trials have not yet clearly clarified the quality and quantity of dietary fiber that should be consumed to be equally tolerated by and provide benefit for patients with IBD. This narrative review describes dietary fibers and their characteristics, analyzes the real-word studies on the impact of dietary fiber consumption in IBD in different clinical settings, and concludes with potential future directions in fiber research, focusing on the real-world needs of characterizing the consumption of fiber-rich foods and promoting their adequate intake.
Collapse
Affiliation(s)
- Laura Loy
- IBD Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (L.L.); (C.B.)
| | - Lorenzo Petronio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (L.P.); (G.M.)
| | - Giacomo Marcozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (L.P.); (G.M.)
| | - Cristina Bezzio
- IBD Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (L.L.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (L.P.); (G.M.)
| | - Alessandro Armuzzi
- IBD Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (L.L.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (L.P.); (G.M.)
| |
Collapse
|
13
|
Ariaee A, Koentgen S, Wardill HR, Hold GL, Prestidge CA, Armstrong HK, Joyce P. Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence. EGASTROENTEROLOGY 2024; 2:e100055. [PMID: 39944472 PMCID: PMC11731074 DOI: 10.1136/egastro-2023-100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) is characterised by chronic inflammation in the gastrointestinal tract, with unclear aetiology but with known factors contributing to the disease, including genetics, immune responses, environmental factors and dysbiosis of the gut microbiota. Existing pharmacotherapies mainly target the inflammatory symptoms of disease, but recent research has highlighted the capacity for microbial-accessible carbohydrates that confer health benefits (ie, prebiotics) to selectively stimulate the growth of beneficial gut bacteria for improved IBD management. However, since prebiotics vary in source, chemical composition and microbiota effects, there is a clear need to understand the impact of prebiotic selection on IBD treatment outcomes. This review subsequently explores and contrasts the efficacy of prebiotics from various sources (β-fructans, galacto-oligosaccharides, xylo-oligosaccharides, resistant starch, pectin, β-glucans, glucomannans and arabinoxylans) in mitigating IBD symptomatology, when used as either standalone or adjuvant therapies. In preclinical animal colitis models, prebiotics have revealed type-dependent effects in positively modulating gut microbiota composition and subsequent attenuation of disease indicators and proinflammatory responses. While prebiotics have demonstrated therapeutic potential in animal models, clinical evidence for their precise efficacy remains limited, stressing the need for further investigation in human patients with IBD to facilitate their widespread clinical translation as microbiota-targeting IBD therapies.
Collapse
Affiliation(s)
- Amin Ariaee
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sabrina Koentgen
- University of New South Wales, Sydney, New South Wales, Australia
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina L Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Manitoba Multiple Sclerosis Research Centre, Winnipeg, Manitoba, Canada
- Children’s Health Research Institute Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol 2023; 14:1291724. [PMID: 38107848 PMCID: PMC10722198 DOI: 10.3389/fmicb.2023.1291724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming more common in the Western world due to changes in diet-related microbial dysbiosis, genetics and lifestyle. Incidences of gut permeability can predate IBD and continued gut barrier disruptions increase the exposure of bacterial antigens to the immune system thereby perpetuating chronic inflammation. Currently, most of the approved IBD therapies target individual pro-inflammatory cytokines and pathways. However, they fail in approximately 50% of patients due to their inability to overcome the redundant pro inflammatory immune responses. There is increasing interest in the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions due to their widespread capability to dampen inflammation, promote tolerance of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be engineered for more targeted therapy. Intestinal Treg populations are inherently shaped by dietary molecules and gut microbiota-derived metabolites. Thus, understanding how these molecules influence Treg-mediated preservation of the intestinal barrier will provide insights into immune tolerance-mediated mucosal homeostasis. This review comprehensively explores the interplay between diet, gut microbiota, and immune system in influencing the intestinal barrier function to attenuate the progression of colitis.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
15
|
Marangoni K, Dorneles G, da Silva DM, Pinto LP, Rossoni C, Fernandes SA. Diet as an epigenetic factor in inflammatory bowel disease. World J Gastroenterol 2023; 29:5618-5629. [PMID: 38077158 PMCID: PMC10701328 DOI: 10.3748/wjg.v29.i41.5618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) has as a main characteristic the exacerbation of the immune system against enterocytes, compromising the individual's intestinal microbiota. This inflammatory cascade causes several nutritional deficiencies, which further compromise immunological functioning and, as a result, worsen the prognosis. This vicious cycle can be interrupted as the patient's dietary pattern meets their needs according to their clinical condition, acting directly on the inflammatory process of IBD through the interaction of food, intestinal microbiota, and epigenome. Specific nutritional intervention for IBD has a crucial role in preventing and managing disease activity. This review addresses epigenetic modifications through dietary compounds as a mechanism for modulating the intestinal microbiota of patients with IBD.
Collapse
Affiliation(s)
- Karina Marangoni
- Egas Moniz School of Health and Science, Caparica - Almada, Portugal, Caparica 2820-062, Portugal
- National Institute of Sciences and Technology - Theranostics and Nanobiotechnology, Federal University of Uberlandia - MG, Brazil, Uberlândia 38400-902, Brazil
| | - Gilson Dorneles
- Corporate Social Responsibility, Hospital Moinhos de Vento, Porto Alegre 90035-004, Brazil
| | - Daniella Miranda da Silva
- Postgraduate Program in Gastroenterology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
- Department of Nutrition, Uniasselvi - Group Vitru, Santa Catarina 89082-262, Brazil
| | - Letícia Pereira Pinto
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Carina Rossoni
- Faculty of Medicine, Institute of Environmental Health, University of Lisbon, Lisboa 1649-026, Portugal
- Master in Physical Activity and Health, Polytechnic Institute of Beja, Beja 7800-000, Portugal
- Degree in Nutrition Sciences, Lusófona University, Lisboa 1749-024, Portugal
| | - Sabrina Alves Fernandes
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
16
|
de Oliveira NMT, Schneider VS, Bueno LR, de Mello Braga LLV, da Silva KS, Malaquias da Silva LC, Souza ML, da Luz BB, Lima CD, Bastos RS, de Paula Werner MF, Fernandes ES, Rocha JA, Gois MB, Cordeiro LMC, Maria-Ferreira D. CPW partially attenuates DSS-induced ulcerative colitis in mice. Food Res Int 2023; 173:113334. [PMID: 37803644 DOI: 10.1016/j.foodres.2023.113334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the gastrointestinal tract. The etiology is not fully understood, but environmental, microbial, and immunologic factors, as well as a genetic predisposition, play a role. UC is characterized by episodes of abdominal pain, diarrhea, bloody stools, weight loss, severe colonic inflammation, and ulceration. Despite the increase in the frequency of UC and the deterioration of the quality of life, there are still patients who do not respond well to available treatment options. Against this background, natural products such as polysaccharides are becoming increasingly important as they protect the intestinal mucosa, promote wound healing, relieve inflammation and pain, and restore intestinal motility. In this study, we investigated the effect of a polysaccharide isolated from the biomass of Campomanesia adamantium and Campomanesia pubescens (here referred to as CPW) in an experimental model of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS). CPW reversed weight loss, increased disease activity index (DAI), bloody diarrhea, and colon shortening. In addition, CPW reduced visceral mechanical hypersensitivity, controlled oxidative stress and inflammation, and protected the mucosal barrier. CPW is not absorbed in the intestine, does not inhibit cytochrome P450 proteins, and does not exhibit AMES toxicity. These results suggest that CPW attenuates DSS-induced acute and chronic colitis in mice and may be a potential alternative treatment for UC.
Collapse
Affiliation(s)
- Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Vanessa S Schneider
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Maria Luiza Souza
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Cleiane Dias Lima
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ruan Sousa Bastos
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Jefferson Almeida Rocha
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Marcelo Biondaro Gois
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | | | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
17
|
Han JH, Keum DH, Hong SJ, Kim YJ, Han SG. Comparative Evaluation of Polysaccharide Binders on the Quality Characteristics of Plant-Based Patties. Foods 2023; 12:3731. [PMID: 37893624 PMCID: PMC10606718 DOI: 10.3390/foods12203731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Polysaccharides have been used in the production of plant-based meat analogs to replicate the texture of real meat. However, there has been no study that comprehensively compares the effects of different polysaccharides, and a limited number of polysaccharides have been evaluated. Thus, we aimed to identify the most suitable polysaccharide and concentration for plant-based patties. Plant-based patties were manufactured by blending different concentrations (0%, 1%, and 2%) of six polysaccharides with other ingredients, and the quality characteristics and sensory properties were evaluated. The L* values of plant-based patties reduced during the cooking process resembled the color change of beef patty (BP). In particular, a 2% κ-carrageenan-added patty (Car-2) exhibited the lowest L* value among the plant-based patties, measured at 44.05 (p < 0.05). Texture parameters exhibited high values by adding 2% κ-carrageenan and locust bean gum, which was close to BP. In the sensory evaluation, Car-2 showed higher scores for sensory preferences than other plant-based patties. Based on our data, incorporating 2% κ-carrageenan could offer a feasible way of crafting plant-based meat analogs due to its potential to enhance texture and flavor. Further studies are required to evaluate the suitability of polysaccharides in various types of plant-based meat analogs.
Collapse
Affiliation(s)
| | | | | | | | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.H.); (D.-H.K.); (S.-J.H.); (Y.-J.K.)
| |
Collapse
|
18
|
Pallio G. Editorial: Novel Therapeutic Approaches in Inflammatory Bowel Diseases. Biomedicines 2023; 11:2466. [PMID: 37760907 PMCID: PMC10526183 DOI: 10.3390/biomedicines11092466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) encompass ulcerative colitis (UC) and Crohn's disease (CD), both of which are inflammatory ailments affecting the gastrointestinal tract [...].
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
19
|
Fliss-Isakov N, Aviv Cohen N, Bromberg A, Elbert G, Anbar R, Ron Y, Hirsch A, Thurm T, Maharshak N. Crohn's Disease Exclusion Diet for the Treatment of Crohn's Disease: Real-World Experience from a Tertiary Center. J Clin Med 2023; 12:5428. [PMID: 37629470 PMCID: PMC10455757 DOI: 10.3390/jcm12165428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The Crohn's Disease (CD) exclusion diet (CDED) has been shown to induce remission in pediatric and adult patients with CD. In this retrospective cohort study, we describe our real-world experience with the CDED at the inflammatory bowel disease (IBD) unit of the Tel Aviv Medical Center between 2018-2021. CD patients with multiple clinical presentations and disease phenotypes who initiated the diet were included. Indications for treatment, medical and nutritional data were collected from dietician clinic visits and medical records. Clinical and biomarker responses were determined. The CDED was recommended to 220 CD patients. Seventy-two patients were included in the analysis for a clinically active disease (n = 48) or for remission maintenance (n = 24). Among patients with a clinically active disease, 62.5% of patients achieved clinical remission at week 6 and at week 12. A positive association between high adherence to the CDED and clinical remission at week 12 was observed (adjusted OR = 7.6, 95% CI 1.07-55.2, p = 0.043). Among patients treated for remission maintenance, remission at week 12 was maintained among 83.3% of patients. We conclude that the CDED may be a promising intervention for multiple CD presentations and indications. These findings should be further validated in larger, prospective, controlled studies.
Collapse
Affiliation(s)
- Naomi Fliss-Isakov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Nathaniel Aviv Cohen
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Ahuva Bromberg
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Nutrition and Dietetics Department, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Gal Elbert
- Nutrition and Dietetics Department, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Ronit Anbar
- Nutrition and Dietetics Department, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Yulia Ron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Ayal Hirsch
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Tamar Thurm
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Nitsan Maharshak
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| |
Collapse
|
20
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Hoffmann Sarda FA, Giuntini EB. Carbohydrates for glycemic control: functional and microbiome aspects. Curr Opin Clin Nutr Metab Care 2023; 26:341-346. [PMID: 37144465 DOI: 10.1097/mco.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Glycemia goals are used as indicators of control and progression in prediabetes and diabetes. Adopting healthy eating habits is essential. It is worth considering the quality of carbohydrates to help with dietary glycemic control. The present article aims to review recent meta-analyses published in the years 2021-2022 on the effects of dietary fiber and low glycemic index/load (LGI/LGL) foods on glycemic control and how gut microbiome modulation contributes to glycemic control. RECENT FINDINGS Data involving more than 320 studies were reviewed. The evidence allows us to infer that LGI/LGL foods, including dietary fiber intake, are associated with reduced fasting glycemia and insulinemia, postprandial glycemic response, HOMA-IR, and glycated hemoglobin, which are more evident in soluble dietary fiber. These results can be correlated with changes in the gut microbiome. However, the mechanistic roles of microbes or metabolites implicated in these observations continue to be explored. Some controversial data highlight the need for more homogeneity between studies. SUMMARY The properties of dietary fiber are reasonably well established for their glycemic homeostasis effects, including the fermentation aspects. Findings of gut microbiome correlations with glucose homeostasis can be incorporated into clinical nutrition practice. Target dietary fiber interventions on microbiome modulation can offer options to improve glucose control and contribute to personalized nutritional practices.
Collapse
Affiliation(s)
- Fabiana A Hoffmann Sarda
- Faculty of Science & Engineering, University of Limerick (UL)
- Health Research Institute (UL)
- Bernal Institute (UL), Limerick, Republic of Ireland
| | - Eliana Bistriche Giuntini
- Food Research Center (FoRC/CEPID/FAPESP), University of São Paulo (USP), Rua do Lago, Cidade Universitária, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Liu M, Wang Y, Guan G, Lu X, Zhu Y, Duan X. Dietary Supplementation of Ancientino Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress. Nutrients 2023; 15:2798. [PMID: 37375702 DOI: 10.3390/nu15122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Ancientino, a complex dietary fiber supplement mimicking the ancient diet, has improved chronic heart failure, kidney function, and constipation. However, its effect on ulcerative colitis is unknown. This study explores the impact of Ancientino on colitis caused by dextran sulfate sodium (DSS) and its mechanisms. Data analyses showed that Ancientino alleviated bodyweight loss, colon shortening and injury, and disease activity index (DAI) score, regulated levels of inflammatory factors (tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), interleukin-1 beta (IL-1β), and interleukin 6 (IL-6)), reduced intestinal permeability (d-lactate and endotoxin), fluorescein isothiocyanate-dextran (FITC-dextran), and diamine oxidase (DAO), repaired colonic function (ZO-1 and occludin), and suppressed oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)) in vivo and in vitro. In short, this study demonstrated that Ancientino alleviates colitis and exerts an anticolitis effect by reducing inflammatory response, suppressing oxidative stress, and repairing intestinal barrier function. Thus, Ancientino may be an effective therapeutic dietary resource for ulcerative colitis.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Yuhui Wang
- School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
- Industrial Technology Research Institute, Guilin Medical University, Guilin 541199, China
| | - Guoqiang Guan
- School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
- Industrial Technology Research Institute, Guilin Medical University, Guilin 541199, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xi Lu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Xiaoqun Duan
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- School of Biomedical Industry, Guilin Medical University, Guilin 541199, China
- Industrial Technology Research Institute, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
23
|
Fotschki J, Ogrodowczyk AM, Wróblewska B, Juśkiewicz J. Side Streams of Vegetable Processing and Its Bioactive Compounds Support Microbiota, Intestine Milieu, and Immune System. Molecules 2023; 28:molecules28114340. [PMID: 37298819 DOI: 10.3390/molecules28114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The industry of vegetable processing generates large amounts of by-products, which often emerge seasonally and are susceptible to microbial degradation. Inadequate management of this biomass results in the loss of valuable compounds that are found in vegetable by-products that can be recovered. Considering the possibility of using waste, scientists are trying to reuse discarded biomass and residues to create a product of higher value than those processed. The by-products from the vegetable industry can provide an added source of fibre, essential oils, proteins, lipids, carbohydrates, and bioactive compounds, such as phenolics. Many of these compounds have bioactive properties, such as antioxidative, antimicrobial, and anti-inflammatory activity, which could be used, especially in the prevention or treatment of lifestyle diseases connected with the intestinal milieu, including dysbiosis and immune-mediated diseases resulting in inflammation. This review summarises the key aspects of the health-promoting value of by-products and their bioactive compounds derived from fresh or processed biomass and extracts. In this paper, the relevance of side streams as a source of beneficial compounds with the potential for promoting health is considered, particularly their impact on the microbiota, immune system, and gut milieu because all of these fields interact closely to affect host nutrition, prevent chronic inflammation, and provide resistance to some pathogens.
Collapse
Affiliation(s)
- Joanna Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Anna M Ogrodowczyk
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
24
|
Haskey N, Gold SL, Faith JJ, Raman M. To Fiber or Not to Fiber: The Swinging Pendulum of Fiber Supplementation in Patients with Inflammatory Bowel Disease. Nutrients 2023; 15:nu15051080. [PMID: 36904081 PMCID: PMC10005525 DOI: 10.3390/nu15051080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence-based dietary guidance around dietary fiber in inflammatory bowel disease (IBD) has been limited owing to insufficient reproducibility in intervention trials. However, the pendulum has swung because of our increased understanding of the importance of fibers in maintaining a health-associated microbiome. Preliminary evidence suggests that dietary fiber can alter the gut microbiome, improve IBD symptoms, balance inflammation, and enhance health-related quality of life. Therefore, it is now more vital than ever to examine how fiber could be used as a therapeutic strategy to manage and prevent disease relapse. At present, there is limited knowledge about which fibers are optimal and in what form and quantity they should be consumed to benefit patients with IBD. Additionally, individual microbiomes play a strong role in determining the outcomes and necessitate a more personalized nutritional approach to implementing dietary changes, as dietary fiber may not be as benign as once thought in a dysbiotic microbiome. This review describes dietary fibers and their mechanism of action within the microbiome, details novel fiber sources, including resistant starches and polyphenols, and concludes with potential future directions in fiber research, including the move toward precision nutrition.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, The Irving K. Barber Faculty of Science, University of British Columbia—Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Stephanie L. Gold
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maitreyi Raman
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
25
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
26
|
Gubatan J, Kulkarni CV, Talamantes SM, Temby M, Fardeen T, Sinha SR. Dietary Exposures and Interventions in Inflammatory Bowel Disease: Current Evidence and Emerging Concepts. Nutrients 2023; 15:579. [PMID: 36771288 PMCID: PMC9921630 DOI: 10.3390/nu15030579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Diet is intimately linked to the gastrointestinal (GI) tract and has potent effects on intestinal immune homeostasis. Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the GI tract. The therapeutic implications of diet in patients with IBD have received significant attention in recent years. In this review, we provide a contemporary and comprehensive overview of dietary exposures and interventions in IBD. Epidemiological studies suggest that ultra-processed foods, food additives, and emulsifiers are associated with a higher incidence of IBD. Exclusion and elimination diets are associated with improved symptoms in patients with IBD, but no effects on objective markers of inflammation. Specific dietary interventions (e.g., Mediterranean, specific carbohydrate, high fiber, ketogenic, anti-inflammatory diets) have been shown to reduce symptoms, improve inflammatory biomarkers, and quality of life metrics to varying degrees, but these studies are limited by study design, underpowering, heterogeneity, and confounding. To date, there is no robust evidence that any dietary intervention alone may replace standard therapies in patients with IBD. However, diet may play an adjunct role to induce or maintain clinical remission with standard IBD therapies. The results of novel dietary trials in IBD such as personalized fiber, intermittent fasting, and time-restricted diets are eagerly awaited.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Chiraag V. Kulkarni
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Melissa Talamantes
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Touran Fardeen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Hu YC, Hu JL, Li J, Wang J, Zhang XY, Wu XY, Li X, Guo ZB, Zou L, Wu DT. Physicochemical characteristics and biological activities of soluble dietary fibers isolated from the leaves of different quinoa cultivars. Food Res Int 2023; 163:112166. [PMID: 36596115 DOI: 10.1016/j.foodres.2022.112166] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Quinoa leaf is consumed as a promising value-added vegetable in the diet. Although quinoa leaf is rich in soluble dietary fibers, the knowledge regarding their chemical structures and biological activities is still limited, which astricts their application in the functional food industry. Thus, to improve the precise use and application of soluble dietary fibers (SDFs) isolated from quinoa leaves in the food industry, the physicochemical structures and bioactivities of SDFs isolated from different quinoa leaves were systematically investigated. Results indicated that quinoa leaves were rich in SDFs, ranging from 3.30 % to 4.55 % (w/w). Quinoa SDFs were mainly composed of acidic polysaccharides, such as homogalacturonan and rhamnogalacturonan I, which had the molecular weights in the range of 4.228 × 104 -7.059 × 104 Da. Besides, quinoa SDFs exerted potential in vitro antioxidant activities, lipid and bile acid-adsorption capacities, immunoregulatory activities, and prebiotic effects, which might be partially associated with their molecular mass, content of uronic acid, and content of bound polyphenol. Collectively, these findings are beneficial to better understanding the chemical structures and bioactivities of SDFs extracted from different quinoa leaves, which can also provide a scientific basis for developing quinoa SDFs into functional foods in the food industry.
Collapse
Affiliation(s)
- Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ju-Li Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xian-Yue Zhang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao-Yong Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Zhan-Bin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
28
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. Components of the Fiber Diet in the Prevention and Treatment of IBD-An Update. Nutrients 2022; 15:nu15010162. [PMID: 36615818 PMCID: PMC9823509 DOI: 10.3390/nu15010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of diseases with a chronic course, characterized by periods of exacerbation and remission. One of the elements that could potentially predispose to IBD is, among others, a low-fiber diet. Dietary fiber has many functions in the human body. One of the most important is its influence on the composition of the intestinal microflora. Intestinal dysbiosis, as well as chronic inflammation that occurs, are hallmarks of IBD. Individual components of dietary fiber, such as β-glucan, pectin, starch, inulin, fructooligosaccharides, or hemicellulose, can significantly affect preventive effects in IBD by modulating the composition of the intestinal microbiota or sealing the intestinal barrier, among other things. The main objective of the review is to provide information on the effects of individual fiber components of the diet on the risk of IBD, including, among other things, altering the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
29
|
Di Rosa C, Altomare A, Imperia E, Spiezia C, Khazrai YM, Guarino MPL. The Role of Dietary Fibers in the Management of IBD Symptoms. Nutrients 2022; 14:nu14224775. [PMID: 36432460 PMCID: PMC9696206 DOI: 10.3390/nu14224775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, progressive, immune-mediated diseases of the intestinal tract. The main subtypes of IBDs are Chron's disease (CD) and ulcerative colitis (UC). The etiology is still unclear, but there are genetic, environmental and host-related factors that contribute to the development of these diseases. Recent literature has shown that dietary therapy is the cornerstone of IBD treatment in terms of management of symptoms, relapse and care of the pathology. IBD patients show that microbiota dysbiosis and diet, especially dietary fiber, can modulate its composition. These patients are more at risk of energy protein malnutrition than the general population and are deficient in micronutrients. So far, no dietary component is considered responsible for IBD and there is not a specific therapeutic diet for it. The aim of this review is to evaluate the role of dietary fibers in CD and UC and help health professionals in the nutritional management of these pathologies. Further studies are necessary to determine the appropriate amount and type of fiber to suggest in the case of IBD to ameliorate psychosocial conditions and patients' quality of life.
Collapse
Affiliation(s)
- Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annamaria Altomare
- Research Unit of Gastroenterology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Correspondence:
| | - Elena Imperia
- Research Unit of Gastroenterology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Yeganeh Manon Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
30
|
Caetano MAF, Castelucci P. Role of short chain fatty acids in gut health and possible therapeutic approaches in inflammatory bowel diseases. World J Clin Cases 2022; 10:9985-10003. [PMID: 36246826 PMCID: PMC9561599 DOI: 10.12998/wjcc.v10.i28.9985] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by inflammation in the gastrointestinal tract and include Ulcerative Colitis and Crohn's Disease. These diseases are costly to health services, substantially reduce patients' quality of life, and can lead to complications such as cancer and even death. Symptoms include abdominal pain, stool bleeding, diarrhea, and weight loss. The treatment of these diseases is symptomatic, seeking disease remission. The intestine is colonized by several microorganisms, such as fungi, viruses, and bacteria, which constitute the intestinal microbiota (IM). IM bacteria promotes dietary fibers fermentation and produces short-chain fatty acids (SCFAs) that exert several beneficial effects on intestinal health. SCFAs can bind to G protein-coupled receptors, such as GPR41 and GPR43, promoting improvements in the intestinal barrier, anti-inflammatory, and antioxidant effects. Thus, SCFAs could be a therapeutic tool for IBDs. However, the mechanisms involved in these beneficial effects of SCFAs remain poorly understood. Therefore, this paper aims to provide a review addressing the main aspects of IBDs, and a more detailed sight of SCFAs, focusing on the main effects on different aspects of the intestine with an emphasis on IBDs.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508900, SP, Brazil
| |
Collapse
|