1
|
Zainuddin ANZ, Mustakim NN, Rosemanzailani FA, Fadilah NIM, Maarof M, Fauzi MB. A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels 2025; 11:194. [PMID: 40136899 PMCID: PMC11942582 DOI: 10.3390/gels11030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has long been recognized for its medicinal properties, particularly in wound healing. Recent advancements in material science have led to the development of honey-containing hydrogels, combining the natural healing properties of honey with the versatile characteristics of hydrogel matrices. These hydrogels offer numerous advantages, including high moisture retention, biocompatibility, and the controlled release of bioactive compounds, making them highly effective for wound healing applications. Hydrogels hold significant potential in advancing medical applications, particularly for cutaneous injuries. The diverse properties of honey, including antimicrobial, anti-inflammatory, and anti-eschar effects, have shown promise in accelerating tissue regeneration. According to studies, they are effective in maintaining a good swelling ratio index, Water Vapour Transmission Rate (WVTR), contact angle, tensile and elongation at break, in vitro biodegradation rate, viscosity and porosity analysis, lowering bacterial infections, and encouraging rapid tissue regeneration with notable FTIR peaks and SEM average pore sizes. However, limitations such as low bioavailability and inefficiencies in direct application reduce their therapeutic effectiveness at the wound site. Integrating honey into hydrogels can help preserve its wound healing mechanisms while enhancing its ability to facilitate skin tissue recovery. This review explores the underlying mechanisms of honey in wound healing management and presents an extensive analysis of honey-containing hydrogels reported in the literature over the past eight years. It emphasizes the physicochemical and mechanical effectiveness and advancements of honey-incorporated hydrogels in promoting skin wound healing and tissue regeneration, supported by evidence from both in vitro and in vivo studies. While honey-based therapies for wound healing have demonstrated promising outcomes in numerous in vitro and animal studies, clinical studies remain limited. Despite that, honey's incorporation into hydrogel systems, however, offers a potent fusion of contemporary material technology and natural healing qualities, marking a substantial breakthrough in wound treatment.
Collapse
Affiliation(s)
- Andik Nisa Zahra Zainuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nurul Nadhirah Mustakim
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Farah Alea Rosemanzailani
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
2
|
Bagewadi S, Rajendran M, Ganapathisankarakrishnan A, Budharaju H, Sethuraman S, Sundaramurthi D. Preparation of thermoresponsive & enzymatically crosslinkable gelatin-gellan gum bioink: A protein-polysaccharide hydrogel for 3D bioprinting of complex soft tissues. Int J Biol Macromol 2025; 295:139563. [PMID: 39788240 DOI: 10.1016/j.ijbiomac.2025.139563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Developing superior bioinks present several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.5GL/2GG was found to be ideal for printing complex and highly intricate structures with excellent shape fidelity. Two different crosslinkers namely transglutaminase (TG) and calcium chloride (CaCl2) were utilized for crosslinking. The rheological properties of GL/GG bioink indicated that TG and dual (TG + CaCl2) crosslinked constructs had storage modulus equivalent to the that of native skin. Direct and indirect cytotoxicity assays revealed that the developed constructs were cytocompatible as well as hemocompatible. The 3D bioprinted GL/GG constructs crosslinked with only TG showed better cell viability, proliferation, cell spreading and wound healing efficiency in vitro compared to dual crosslinked constructs. In conclusion, TG crosslinking of 7.5GL/2GG bioink was ideal for bioprinting of skin tissue constructs for regenerative medicine applications. By altering the concentrations & printing conditions, this bioink may be tuned for other soft tissue engineering applications.
Collapse
Affiliation(s)
- Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Madhumathi Rajendran
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Aiswarya Ganapathisankarakrishnan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
3
|
Huang X, Niu X, Ma Y, Wang X, Su T, He Y, Lu F, Gao J, Chang Q. Hierarchical double-layer microneedles accomplish multicenter skin regeneration in diabetic full-thickness wounds. J Adv Res 2024; 66:237-249. [PMID: 38218581 PMCID: PMC11674785 DOI: 10.1016/j.jare.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.
Collapse
Affiliation(s)
| | | | | | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
4
|
Sallehuddin N, Hao LQ, Wen APY, Fadilah NIM, Maarof M, Fauzi MB. Thymoquinone-Incorporated CollaGee Biomatrix: A Promising Approach for Full-Thickness Wound Healing. Pharmaceutics 2024; 16:1440. [PMID: 39598563 PMCID: PMC11597209 DOI: 10.3390/pharmaceutics16111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Wound infection is the leading cause of delayed wound healing. Despite ongoing research, the ideal treatment for full-thickness skin wounds is yet to be achieved. Skin tissue engineering provides an alternative treatment, with the potential for skin regeneration. Background/Objectives: Previously, we characterized a collagen-gelatin-elastin (CollaGee) acellular skin substitute and evaluated its cytocompatibility. The assessments revealed good physicochemical properties and cytocompatibility with human dermal fibroblasts (HDF). This study aimed to incorporate thymoquinone (TQ) as the antibacterial agent into CollaGee biomatrices and evaluate their cytocompatibility in vitro. Methods: Briefly, dose-response and antibacterial studies were conducted to confirm the antimicrobial activity and identify the suitable concentration for incorporation; 0.05 and 0.1 mg/mL concentrations were selected. Then, the cytocompatibility was evaluated quantitatively and qualitatively. Results: Cytocompatibility analysis revealed no toxicity towards HDFs, with 81.5 + 0.7% cell attachment and 99.27 + 1.6% cell viability. Specifically, the 0.05 mg/mL TQ concentration presented better viability, but the differences were not significant. Immunocytochemistry staining revealed the presence of collagen I, vinculin, and alpha smooth muscle actin within the three-dimensional biomatrices. Conclusions: These results suggest that TQ-incorporated CollaGee biomatrices are a promising candidate for enhancing the main key player, HDF, to efficiently regenerate the dermal layer in full-thickness skin wound healing. Further investigations are needed for future efficiency studies in animal models.
Collapse
Affiliation(s)
- Nusaibah Sallehuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn. Bhd., Hive 5, Taman Teknologi, MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mh B. Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
5
|
Yu Q, Gao Y, Guo J, Wang X, Gao X, Zhao Y, Liu Y, Wen M, Zhang X, An M. Bioactivity and in vitro immunological studies of xenogeneic decellularized extracellular matrix scaffolds for implantable applications. J Mater Chem B 2024; 12:9390-9407. [PMID: 39189732 DOI: 10.1039/d4tb00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Decellularized scaffolds retain the main bioactive substances of the extracellular matrix, which can better promote cell proliferation and matrix reconstruction at the defect site, and have great potential for morphological and functional restoration in patients with tissue defects. Due to the safety of the material source of allogeneic decellularized scaffolds, there is a great limitation in their clinical application, so the preparation and evaluation of xenodermal acellular scaffolds have attracted much attention. In terms of skin tissue structure and function, porcine skin has a high degree of similarity to human skin and has the advantages of sufficient quantity and no ethical issues. However, there is a risk of immune rejection after xenodermal acellular scaffold transplantation. To address the above problems, this paper focuses on porcine dermal decellularized scaffolds prepared using two common decellularization preparation methods and compares the decellularization efficiency, retention of active components of the extracellular matrix, structural characterization of the decellularized scaffolds, and the effect of porcine dermal decellularized scaffolds on mouse Raw264.7 macrophages, so as to make a functional evaluation of the active components and immune effects of porcine dermal decellularized scaffolds, and to provide a reference for filling trauma-induced defects in humans.
Collapse
Affiliation(s)
- Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yuantao Gao
- School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xinyue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yifan Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Xiangyu Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| |
Collapse
|
6
|
Thambirajoo M, Md Fadilah NI, Maarof M, Lokanathan Y, Mohamed MA, Zakaria S, Bt Hj Idrus R, Fauzi MB. Functionalised Sodium-Carboxymethylcellulose-Collagen Bioactive Bilayer as an Acellular Skin Substitute for Future Use in Diabetic Wound Management: The Evaluation of Physicochemical, Cell Viability, and Antibacterial Effects. Polymers (Basel) 2024; 16:2252. [PMID: 39204471 PMCID: PMC11359669 DOI: 10.3390/polym16162252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
The wound healing mechanism is dynamic and well-orchestrated; yet, it is a complicated process. The hallmark of wound healing is to promote wound regeneration in less time without invading skin pathogens at the injury site. This study developed a sodium-carboxymethylcellulose (Na-CMC) bilayer scaffold that was later integrated with silver nanoparticles/graphene quantum dot nanoparticles (AgNPs/GQDs) as an acellular skin substitute for future use in diabetic wounds. The bilayer scaffold was prepared by layering the Na-CMC gauze onto the ovine tendon collagen type 1 (OTC-1). The bilayer scaffold was post-crosslinked with 0.1% (w/v) genipin (GNP) as a natural crosslinking agent. The physical and chemical characteristics of the bilayer scaffold were evaluated. The results demonstrate that crosslinked (CL) groups exhibited a high-water absorption capacity (>1000%) and an ideal water vapour evaporation rate (2000 g/m2 h) with a lower biodegradation rate and good hydrophilicity, compression, resilience, and porosity than the non-crosslinked (NC) groups. The minimum inhibitory concentration (MIC) of AgNPs/GQDs presented some bactericidal effects against Gram-positive and Gram-negative bacteria. The cytotoxicity tests on bilayer scaffolds demonstrated good cell viability for human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Therefore, the Na-CMC bilayer scaffold could be a potential candidate for future diabetic wound care.
Collapse
Affiliation(s)
- Maheswary Thambirajoo
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi 43600, Malaysia;
| | - Sarani Zakaria
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia
| |
Collapse
|
7
|
Liu X, Deng Y, Liang Z, Qiao D, Zhang W, Wang M, Li F, Liu J, Wu Y, Chen G, Liu Y, Tan W, Xing J, Huang W, Zhao D, Li Y. The alteration of the structure and macroscopic mechanical response of porcine patellar tendon by elastase digestion. Front Bioeng Biotechnol 2024; 12:1374352. [PMID: 38694621 PMCID: PMC11061363 DOI: 10.3389/fbioe.2024.1374352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.
Collapse
Affiliation(s)
- Xiaoyun Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zeyu Liang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentian Zhang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Mian Wang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopaedics, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Feifei Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiannan Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobing Wu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangxin Chen
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan Liu
- Department of Anatomy, Gannan Healthcare Vocational College, Ganzhou, China
| | - Wenchang Tan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Xing
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dongliang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Teng F, Wang W, Wang ZQ, Wang GX. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication 2024; 16:025019. [PMID: 38350130 DOI: 10.1088/1758-5090/ad28f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.
Collapse
Affiliation(s)
- Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Zhi-Qiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
9
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Fadilah NIM, Ahmat N, Hao LQ, Maarof M, Rajab NF, Idrus RBH, Fauzi MB. Biological Safety Assessments of High-Purified Ovine Collagen Type I Biomatrix for Future Therapeutic Product: International Organisation for Standardisation (ISO) and Good Laboratory Practice (GLP) Settings. Polymers (Basel) 2023; 15:polym15112436. [PMID: 37299233 DOI: 10.3390/polym15112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Wound care management is incredibly challenging for chronic injuries, despite the availability of various types of wound care products in the market. However, most current wound-healing products do not attempt to mimic the extracellular matrix (ECM) and simply provide a barrier function or wound covering. Collagen is a natural polymer that involves a major constituent of the ECM protein, thus making it attractive to be used in skin tissue regeneration during wound healing. This study aimed to validate the biological safety assessments of ovine tendon collagen type-I (OTC-I) in the accredited laboratory under ISO and GLP settings. It is important to ensure that the biomatrix will not stimulate the immune system to produce any adverse reaction. Therefore, we successfully extracted collagen type-I from the ovine tendon (OTC- I) using a method of low-concentration acetic acid. The three-dimensional (3D) skin patch of spongy OTC-I was a soft and white colour, being tested for safety and biocompatibility evaluations based on ISO 10993-5, ISO 10993-10, ISO 10993-11, ISO 10993-23, USP 40 <151>, and OECD 471. For the dermal sensitisation and acute irritation test, none of the tested animals displayed any erythema or oedema effects (p > 0.005). In addition, there were no abnormalities detected in the organ of the mice after being exposed to OTC-I; additionally, no morbidity and mortality were observed in the acute systemic test under the guideline of ISO 10993-11:2017. The grade 0 (non-reactive) based on ISO 10993-5:2009 was graded for the OTC-I at 100% concentration and the mean number of the revertant colonies did not exceed 2-fold of the 0.9% w/v sodium chloride compared to the tester strains of S. typhimurium (TA100, TA1535, TA98, TA1537), and E. coli (WP2 trp uvrA). Our study revealed that OTC-I biomatrix does not present any adverse effects or abnormalities in the present study's condition of induced skin sensitization effect, mutagenic and cytotoxic towards cells and animals. This biocompatibility assessment demonstrated a good agreement between in vitro and in vivo results regarding the absence of skin irritation and sensitization potential. Therefore, OTC-I biomatrix is a potential medical device candidate for future clinical trials focusing on wound care management.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nazeha Ahmat
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur 50300, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| |
Collapse
|
11
|
Kamaruzaman N, Fauzi MB, Tabata Y, Yusop SM. Functionalised Hybrid Collagen-Elastin for Acellular Cutaneous Substitute Applications. Polymers (Basel) 2023; 15:polym15081929. [PMID: 37112076 PMCID: PMC10143773 DOI: 10.3390/polym15081929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Wound contracture, which commonly happens after wound healing, may lead to physical distortion, including skin constriction. Therefore, the combination of collagen and elastin as the most abundant extracellular matrix (ECM) skin matrices may provide the best candidate biomaterials for cutaneous wound injury. This study aimed to develop a hybrid scaffold containing green natural resources (ovine tendon collagen type-I and poultry-based elastin) for skin tissue engineering. Briefly, freeze-drying was used to create the hybrid scaffolds, which were then crosslinked with 0.1% (w/v) genipin (GNP). Next, the physical characteristics (pore size, porosity, swelling ratio, biodegradability and mechanical strength) of the microstructure were assessed. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectrophotometry were used for the chemical analysis. The findings showed a uniform and interconnected porous structure with acceptable porosity (>60%) and high-water uptake capacity (>1200%), with pore sizes ranging between 127 ± 22 and 245 ± 35 µm. The biodegradation rate of the fabricated scaffold containing 5% elastin was lower (<0.043 mg/h) compared to the control scaffold (collagen only; 0.085 mg/h). Further analysis with EDX identified the main elements of the scaffold: it contained carbon (C) 59.06 ± 1.36-70.66 ± 2.89%, nitrogen (N) 6.02 ± 0.20-7.09 ± 0.69% and oxygen (O) 23.79 ± 0.65-32.93 ± 0.98%. FTIR analysis revealed that collagen and elastin remained in the scaffold and exhibited similar functional amides (amide A: 3316 cm-1, amide B: 2932 cm-1, amide I: 1649 cm-1, amide II: 1549 cm-1 and amide III: 1233 cm-1). The combination of elastin and collagen also produced a positive effect via increased Young's modulus values. No toxic effect was identified, and the hybrid scaffolds significantly supported human skin cell attachment and viability. In conclusion, the fabricated hybrid scaffolds demonstrated optimum physicochemical and mechanical properties and may potentially be used as an acellular skin substitute in wound management.
Collapse
Affiliation(s)
- Nurkhuzaiah Kamaruzaman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawara-cho Shogoin, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Salma Mohamad Yusop
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
12
|
Amirrah IN, Zulkiflee I, Mohd Razip Wee MF, Masood A, Siow KS, Motta A, Fauzi MB. Plasma-Polymerised Antibacterial Coating of Ovine Tendon Collagen Type I (OTC) Crosslinked with Genipin (GNP) and Dehydrothermal-Crosslinked (DHT) as a Cutaneous Substitute for Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2739. [PMID: 37049037 PMCID: PMC10096142 DOI: 10.3390/ma16072739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to develop an acellular, ready-to-use ovine tendon collagen type I (OTC-I) bioscaffold with an antibacterial coating for the immediate treatment of skin wounds and to prevent infection post-implantation. Two types of crosslinkers, 0.1% genipin (GNP) and dehydrothermal treatment (DHT), were explored to optimise the material strength and biodegradability compared with a non-crosslinked (OTC) control. Carvone plasma polymerisation (ppCar) was conducted to deposit an antibacterial protective coating. Various parameters were performed to investigate the physicochemical properties, mechanical properties, microstructures, biodegradability, thermal stability, surface wettability, antibacterial activity and biocompatibility of the scaffolds on human skin cells between the different crosslinkers, with and without plasma polymerisation. GNP is a better crosslinker than DHT because it demonstrated better physicochemical properties (27.33 ± 5.69% vs. 43 ± 7.64% shrinkage), mechanical properties (0.15 ± 0.15 MPa vs. 0.07 ± 0.08 MPa), swelling (2453 ± 419.2% vs. 1535 ± 392.9%), biodegradation (0.06 ± 0.06 mg/h vs. 0.15 ± 0.16 mg/h), microstructure and biocompatibility. Similarly, its ppCar counterpart, GNPppCar, presents promising results as a biomaterial with enhanced antibacterial properties. Plasma-polymerised carvone on a crosslinked collagen scaffold could also support human skin cell proliferation and viability while preventing infection. Thus, GNPppCar has potential for the rapid treatment of healing wounds.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Asad Masood
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Kim S. Siow
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
14
|
The Fabrication of Gelatin-Elastin-Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute. Polymers (Basel) 2023; 15:polym15030779. [PMID: 36772084 PMCID: PMC9920652 DOI: 10.3390/polym15030779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Gelatin usage in scaffold fabrication is limited due to its lack of enzymatic and thermal resistance, as well as its mechanical weakness. Hence, gelatin requires crosslinking and reinforcement with other materials. This study aimed to fabricate and characterise composite scaffolds composed of gelatin, elastin, and cellulose nanocrystals (CNC) and crosslinked with genipin. The scaffolds were fabricated using the freeze-drying method. The composite scaffolds were composed of different concentrations of CNC, whereas scaffolds made of pure gelatin and a gelatin-elastin mixture served as controls. The physicochemical and mechanical properties of the scaffolds, and their cellular biocompatibility with human dermal fibroblasts (HDF), were evaluated. The composite scaffolds demonstrated higher porosity and swelling capacity and improved enzymatic resistance compared to the controls. Although the group with 0.5% (w/v) CNC recorded the highest pore size homogeneity, the diameters of most of the pores in the composite scaffolds ranged from 100 to 200 μm, which is sufficient for cell migration. Tensile strength analysis revealed that increasing the CNC concentration reduced the scaffolds' stiffness. Chemical analyses revealed that despite chemical and structural alterations, both elastin and CNC were integrated into the gelatin scaffold. HDF cultured on the scaffolds expressed collagen type I and α-SMA proteins, indicating the scaffolds' biocompatibility with HDF. Overall, the addition of elastin and CNC improved the properties of gelatin-based scaffolds. The composite scaffolds are promising candidates for an acellular skin substitute.
Collapse
|
15
|
Zulkiflee I, Amirrah IN, Fadilah NIM, Wee MFMR, Yusop SM, Maarof M, Fauzi MB. Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031162. [PMID: 36770168 PMCID: PMC9919111 DOI: 10.3390/ma16031162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/12/2023]
Abstract
A skin wound without immediate treatment could delay wound healing and may lead to death after severe infection (sepsis). Any interruption or inappropriate normal wound healing, mainly in these wounds, commonly resulted in prolonged and excessive skin contraction. Contraction is a common mechanism in wound healing phases and contributes 40-80% of the original wound size post-healing. Even though it is essential to accelerate wound healing, it also simultaneously limits movement, mainly in the joint area. In the worst-case scenario, prolonged contraction could lead to disfigurement and loss of tissue function. This study aimed to fabricate and characterise the elastin-fortified gelatin/polyvinyl alcohol (PVA) film layered on top of a collagen sponge as a bilayer hybrid biomatrix. Briefly, the combination of halal-based gelatin (4% (w/v)) and PVA ((4% (w/v)) was used to fabricate composite film, followed by the integration of poultry elastin (0.25 mg/mL) and 0.1% (w/v) genipin crosslinking. Furthermore, further analysis was conducted on the composite bilayer biomatrix's physicochemical and mechanical strength. The bilayer biomatrix demonstrated a slow biodegradation rate (0.374967 ± 0.031 mg/h), adequate water absorption (1078.734 ± 42.33%), reasonable water vapour transmission rate (WVTR) (724.6467 ± 70.69 g/m2 h) and porous (102.5944 ± 28.21%). The bilayer biomatrix also exhibited an excellent crosslinking degree and was mechanically robust. Besides, the elastin releasing study presented an acceptable rate post-integration with hybrid biomatrix. Therefore, the ready-to-use bilayer biomatrix will benefit therapeutic effects as an alternative treatment for future diabetic skin wound management.
Collapse
Affiliation(s)
- Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectrics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Salma Mohamad Yusop
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
16
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
18
|
Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, Fauzi MB, Maarof M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J Tissue Eng 2022; 13:20417314221114273. [PMID: 35923177 PMCID: PMC9340325 DOI: 10.1177/20417314221114273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Wound represents a significant socioeconomic burden for both affected individuals and as a whole healthcare system. Accordingly, stem cells have garnered attention due to their differentiation capacity and ability to aid tissue regeneration by releasing biologically active molecules, found in the cells' cultivated medium which known as conditioned medium (CM) or secretomes. This acellular approach provides a huge advantage over conventional treatment options, which are mainly used cellular treatment at wound closure. Interestingly, the secretomes contained the cell-secreted proteins such as growth factors, cytokines, chemokines, extracellular matrix (ECM), and small molecules including metabolites, microvesicles, and exosomes. This review aims to provide a general view on secretomes and how it is proven to have great potential in accelerating wound healing. Utilizing the use of secretomes with its secreted proteins and suitable biomaterials for fabrications of acellular skin substitutes can be promising in treating skin loss and accelerate the healing process.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | | | - Muhd Aliff Iqmal Badrul Hisham
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Nithiaraj Sunthar Raj
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| |
Collapse
|