1
|
Shakiba Y, Rahman MM. Testing Oncolytic Myxoma Virus in Immunocompetent Mouse Model for Cancer Therapy. Methods Mol Biol 2025; 2860:353-360. [PMID: 39621278 PMCID: PMC11724751 DOI: 10.1007/978-1-0716-4160-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Oncolytic viruses (OVs) have emerged as a class of novel cancer immunotherapeutic. Members of both DNA and RNA viruses developed as OVs for treating diverse types of human cancers. Preclinical research assessing immunotherapeutic efficacy is an essential step toward further development of these OVs. Mice tumor model systems are widely used in preclinical oncolytic viral therapies for evaluating the treatment regimens' efficacy. However, choosing the most appropriate model for a study can be challenging. Here, we describe a simple method of establishing subcutaneous tumors in immunocompetent mice, intratumoral injection of the virus, measuring tumor burden, and studying the survival of mice for preclinical development of oncolytic myxoma virus (MYXV).
Collapse
Affiliation(s)
- Yasmin Shakiba
- School of Medical and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Masmudur M Rahman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Sitta J, De Carlo F, Kirven I, Tackett JH, Penfornis P, Dobbins GC, Barbier M, Del Valle L, Larsen CT, Schutt EG, Li R, Howard CM, Claudio PP. Microbubble-Protected Oncolytic Virotherapy Targeted by Sonoporation Induces Tumor Necrosis and T-Lymphocyte Infiltration in Humanized Mice Bearing Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13697. [PMID: 39769460 PMCID: PMC11678396 DOI: 10.3390/ijms252413697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent® lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system. Once inside the MB, the viral particles become acoustically active such that external ultrasound can target the delivery of the virus locally within the tumor. Humanized NSG female mice (Hu-CD34+ NSG-SGM3) engrafted in their flanks with MDA-MB-231-Luc triple-negative breast cancer (TNBC) cells were transduced with MB/OVs, with or without adjuvant Pembrolizumab treatment, and tumor sizes and tumor necrosis were assessed. The presence of CD8+ (cytotoxic T-cells), CD4+ (helper T-cells), and CD25+ (Tregs) tumor-infiltrating lymphocytes (TILs) was quantified in the tumor samples by immunohistochemistry. In an in vivo model of humanized mice engrafted with a human immune system, we observed significantly greater tumor necrosis and smaller tumor mass in human TNBC xenografts systemically treated with MB/OV complexes in the presence or absence of pembrolizumab adjuvant treatment, compared to controls. Additionally, we observed a low ratio of CD4+/CD8+ TILs and a high ratio of CD8+/CD25+ TILs in the MDA-MB-231 xenografts treated with MB/OVs complexes with or without pembrolizumab adjuvant treatment, compared to controls. Our study demonstrated the feasibility of using MBs to target OVs to TNBC through diagnostic ultrasound, which decreased tumor mass by increasing tumor necrosis and stimulated a local and systemic antitumoral immune response by increasing intratumoral CD8+ T-cytotoxic lymphocyte infiltration and decreasing CD25+ Treg cells.
Collapse
Affiliation(s)
- Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.S.); (C.M.H.)
- Department of Biomedical Sciences, Imaging Track, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - Imani Kirven
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - John H. Tackett
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - Patrice Penfornis
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - George Clement Dobbins
- Department of Neurosurgery and Bioinformatics, University of Alabama Birmingham, Birmingham, AL 35205, USA;
| | - Mallory Barbier
- Department of Pathology, Louisiana Cancer Research Center, Louisiana State University Health, New Orleans, LA 70112, USA; (M.B.); (L.D.V.)
| | - Luis Del Valle
- Department of Pathology, Louisiana Cancer Research Center, Louisiana State University Health, New Orleans, LA 70112, USA; (M.B.); (L.D.V.)
| | | | - Ernest G. Schutt
- Vesselon, Inc., Norwalk, CT 06851, USA; (C.T.L.); (E.G.S.); (R.L.)
| | - Rhodemann Li
- Vesselon, Inc., Norwalk, CT 06851, USA; (C.T.L.); (E.G.S.); (R.L.)
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.S.); (C.M.H.)
- Department of Biomedical Sciences, Imaging Track, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| |
Collapse
|
3
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Wang Y, Ding G, Chu C, Cheng XD, Qin JJ. Genomic biology and therapeutic strategies of liver metastasis from gastric cancer. Crit Rev Oncol Hematol 2024; 202:104470. [PMID: 39111457 DOI: 10.1016/j.critrevonc.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The liver is a frequent site of metastasis in advanced gastric cancer (GC). Despite significant advancements in diagnostic and therapeutic techniques, the overall survival rate for patients afflicted with gastric cancer liver metastasis (GCLM) remains dismally low. Precision oncology has made significant progress in identifying therapeutic targets and enhancing our understanding of metastasis mechanisms through genome sequencing and molecular characterization. Therefore, it is crucial to have a comprehensive understanding of the various molecular processes involved in GCLM and the fundamental principles of systemic therapy to develop new treatment approaches. This paper aims to review recent findings on the diagnosis, potential biomarkers, and therapies targeting the multiple molecular processes of GCLM, with the goal of improving treatment strategies for patients with GCLM.
Collapse
Affiliation(s)
- Yichao Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China
| | - Xiang-Dong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
5
|
Funk C, Uhlig N, Ruzsics Z, Baur F, Peindl M, Nietzer S, Epting K, Vacun G, Dandekar G, Botteron C, Werno C, Grunwald T, Bailer SM. TheraVision: Engineering platform technology for the development of oncolytic viruses based on herpes simplex virus type 1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200784. [PMID: 38596296 PMCID: PMC10950833 DOI: 10.1016/j.omton.2024.200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Matthias Peindl
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Sarah Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Karina Epting
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gabriele Vacun
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
6
|
Thomas RJ, Bartee MY, Valenzuela-Cardenas M, Bartee E. Oncolytic myxoma virus is effective in murine models of triple negative breast cancer despite poor rates of infection. Mol Ther Oncolytics 2023; 30:316-319. [PMID: 37732297 PMCID: PMC10507476 DOI: 10.1016/j.omto.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Oncolytic viruses are being heavily investigated as novel methods to treat cancers; however, predicting their therapeutic efficacy remains challenging. The most commonly used predictive tests involve determining the in vitro susceptibility of a tumor's malignant cells to infection with an oncolytic agent. Whether these tests are truly predictive of in vivo efficacy, however, remains unclear. Here we demonstrate that a recombinant, oncolytic myxoma virus shows efficacy in two murine models of triple negative breast cancer despite extremely low permissivity of these models to viral infection. These data demonstrate that in vitro infectivity studies are not an accurate surrogate for therapeutic efficacy and suggest that other tests need to be developed.
Collapse
Affiliation(s)
- Raquela J. Thomas
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mee Y. Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
7
|
Kaur SD, Singh AD, Kapoor DN. Current perspectives on Vaxinia virus: an immuno-oncolytic vector in cancer therapy. Med Oncol 2023; 40:205. [PMID: 37318642 DOI: 10.1007/s12032-023-02068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Viruses are being researched as cutting-edge therapeutic agents in cancer due to their selective oncolytic action against malignancies. Immuno-oncolytic viruses are a potential category of anticancer treatments because they have natural features that allow viruses to efficiently infect, replicate, and destroy cancer cells. Oncolytic viruses may be genetically modified; engineers can use them as a platform to develop additional therapy modalities that overcome the limitations of current treatment approaches. In recent years, researchers have made great strides in the understanding relationship between cancer and the immune system. An increasing corpus of research is functioning on the immunomodulatory functions of oncolytic virus (OVs). Several clinical studies are currently underway to determine the efficacy of these immuno-oncolytic viruses. These studies are exploring the design of these platforms to elicit the desired immune response and to supplement the available immunotherapeutic modalities to render immune-resistant malignancies amenable to treatment. This review will discuss current research and clinical developments on Vaxinia immuno-oncolytic virus.
Collapse
Affiliation(s)
- Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Aman Deep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142048, India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
8
|
Vannini A, Parenti F, Forghieri C, Barboni C, Zaghini A, Campadelli-Fiume G, Gianni T. Innovative retargeted oncolytic herpesvirus against nectin4-positive cancers. Front Mol Biosci 2023; 10:1149973. [PMID: 37251078 PMCID: PMC10213976 DOI: 10.3389/fmolb.2023.1149973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Nectin4 is a recently discovered tumor associated antigen expressed in cancers that constitute relevant unmet clinical needs, including the undruggable triple negative breast cancer, pancreatic ductal carcinoma, bladder/urothelial cancer, cervical cancer, lung carcinoma and melanoma. So far, only one nectin4-specific drug-Enfortumab Vedotin-has been approved and the clinical trials that test novel therapeutics are only five. Here we engineered R-421, an innovative retargeted onco-immunotherapeutic herpesvirus highly specific for nectin4 and unable to infect through the natural herpes receptors, nectin1 or herpesvirus entry mediator. In vitro, R-421 infected and killed human nectin4-positive malignant cells and spared normal cells, e.g., human fibroblasts. Importantly from a safety viewpoint, R-421 failed to infect malignant cells that do not harbor nectin4 gene amplification/overexpression, whose expression level was moderate-to-low. In essence, there was a net threshold value below which cells were spared from infection, irrespective of whether they were malignant or normal; the only cells that R-421 targeted were the malignant overexpressing ones. In vivo, R-421 decreased or abolished the growth of murine tumors made transgenic for human nectin4 and conferred sensitivity to immune checkpoint inhibitors in combination therapies. Its efficacy was augmented by the cyclophosphamide immunomodulator and decreased by depletion of CD8-positive lymphocytes, arguing that it was in part T cell-mediated. R-421 elicited in-situ vaccination that protected from distant challenge tumors. This study provides proof-of-principle specificity and efficacy data justifying nectin4-retargeted onco-immunotherapeutic herpesvirus as an innovative approach against a number of difficult-to-drug clinical indications.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico Parenti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cristina Forghieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Tatiana Gianni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Schirrmacher V, van Gool S, Stuecker W. Counteracting Immunosuppression in the Tumor Microenvironment by Oncolytic Newcastle Disease Virus and Cellular Immunotherapy. Int J Mol Sci 2022; 23:13050. [PMID: 36361831 PMCID: PMC9655431 DOI: 10.3390/ijms232113050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 10/24/2023] Open
Abstract
An apparent paradox exists between the evidence for spontaneous systemic T cell- mediated anti-tumor immune responses in cancer patients, observed particularly in their bone marrow, and local tumor growth in the periphery. This phenomenon, known as "concomitant immunity" suggests that the local tumor and its tumor microenvironment (TME) prevent systemic antitumor immunity to become effective. Oncolytic Newcastle disease virus (NDV), an agent with inherent anti-neoplastic and immune stimulatory properties, is capable of breaking therapy resistance and immunosuppression. This review updates latest information about immunosuppression by the TME and discusses mechanisms of how oncolytic viruses, in particular NDV, and cellular immunotherapy can counteract the immunosuppressive effect of the TME. With regard to cellular immunotherapy, the review presents pre-clinical studies of post-operative active-specific immunotherapy and of adoptive T cell-mediated therapy in immunocompetent mice. Memory T cell (MTC) transfer in tumor challenged T cell-deficient nu/nu mice demonstrates longevity and functionality of these cells. Graft-versus-leukemia (GvL) studies in mice demonstrate complete remission of late-stage disease including metastases and cachexia. T cell based immunotherapy studies with human cells in human tumor xenotransplanted NOD/SCID mice demonstrate superiority of bone marrow-derived as compared to blood-derived MTCs. Results from clinical studies presented include vaccination studies using two different types of NDV-modified cancer vaccine and a pilot adoptive T-cell mediated therapy study using re-activated bone marrow-derived cancer-reactive MTCs. As an example for what can be expected from clinical immunotherapy against tumors with an immunosuppressive TME, results from vaccination studies are presented from the aggressive brain tumor glioblastoma multiforme. The last decades of basic research in virology, oncology and immunology can be considered as a success story. Based on discoveries of these research areas, translational research and clinical studies have changed the way of treatment of cancer by introducing and including immunotherapy.
Collapse
|