1
|
Paisey SJ, Jones LR, Harrison DJ, Drummond NJ, Edwards OZ, Canham MA, Roberton VH, Marshall C, Parker G, Hills R, Rosser AE, Lane EL, Dunnett SB, Kunath T, Assaf Y, Lelos MJ. Imaging of human stem cell-derived dopamine grafts correlates with behavioural recovery and reveals microstructural brain changes. Neurobiol Dis 2025; 209:106910. [PMID: 40233853 DOI: 10.1016/j.nbd.2025.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Cell therapy is a promising therapeutic intervention for Parkinson's disease (PD) and is currently undergoing safety and efficacy testing in clinical trials worldwide. The goals of this project were (1) to determine whether [18F]Fluorodopa or [18F]Fallypride imaging correlates robustly with functional recovery; and (2) to explore whether diffusion-weighted MR imaging (DWI) could detect graft-induced cytoarchitectural changes in the host brain. hfVM and hESC-derived dopamine precursor cells were transplanted into the 6-OHDA lesioned rat striatum. Tests of motor function and PET and MR imaging were conducted up to 6 months post-transplantation. Our data demonstrate that [18F]Fluorodopa imaging identified presynaptic DA synthesis from hfVM and hESC-derived dopaminergic grafts and [18F]Fallypride imaging confirmed occupancy and normalisation of D2/D3 receptor expression in the grafted hemisphere. In hfVM grafted rats, [18F]Fluorodopa binding correlated robustly with motor recovery on a range of drug-induced and drug-free behavioural tasks. In hESC-DA grafted rats, improvements in [18F]Fluorodopa PET imaging signals preceded recovery of naturalistic motor behaviours. DWI revealed widespread graft-mediated microstructural changes in the rodent brain, which did not identify graft placement, but instead may reflect remodelling of neuroglia. These data further our understanding of the impact of dopaminergic grafts on brain cytoarchitecture and the potential of these radioligands to predict graft efficacy may aid in the translation of therapeutics from preclinical to clinical settings.
Collapse
Affiliation(s)
- Stephen J Paisey
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, University Hospital Wales Main Building, Cardiff CF14 4XN, UK
| | - Lucy R Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - David J Harrison
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Nicola J Drummond
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Olivia Z Edwards
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Maurice A Canham
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria H Roberton
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Christopher Marshall
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, University Hospital Wales Main Building, Cardiff CF14 4XN, UK
| | - Greg Parker
- Independent Imaging Consultant, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rachel Hills
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Anne E Rosser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, UK
| | - Stephen B Dunnett
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yaniv Assaf
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; School of Biochemistry Neurobiology Biophysics, Faculty of Life Sciences, Tel Aviv University, Israel
| | - Mariah J Lelos
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
2
|
Wu JS, Lõhelaid H, Shih CC, Liew HK, Wang V, Hu WF, Chen YH, Saarma M, Airavaara M, Tseng KY. Targeting Rap1b signaling cascades with CDNF: Mitigating platelet activation, plasma oxylipins and reperfusion injury in stroke. Mol Ther 2024; 32:4021-4044. [PMID: 39256999 PMCID: PMC11573613 DOI: 10.1016/j.ymthe.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Cerebral reperfusion injury in stroke, stemming from interconnected thrombotic and inflammatory signatures, often involves platelet activation, aggregation and its interaction with various immune cells, contributing to microvascular dysfunction. However, the regulatory mechanisms behind this platelet activation and the resulting inflammation are not well understood, complicating the development of effective stroke therapies. Utilizing animal models and platelets from hemorrhagic stroke patients, our research demonstrates that human cerebral dopamine neurotrophic factor (CDNF) acts as an endogenous antagonist, mitigating platelet aggregation and associated neuroinflammation. CDNF moderates mitochondrial membrane potential, reactive oxygen species production, and intracellular calcium in activated platelets by interfering with GTP binding to Rap1b, thereby reducing Rap1b activation and downregulating the Rap1b-MAPK-PLA2 signaling pathway, which decreases release of the pro-inflammatory mediator thromboxane A2. In addition, CDNF reduces the inflammatory response in BV2 microglial cells co-cultured with activated platelets. Consistent with ex vivo findings, subcutaneous administration of CDNF in a rat model of ischemic stroke significantly reduces platelet activation, aggregation, lipid mediator production, infarct volume, and neurological deficits. In summary, our study highlights CDNF as a promising therapeutic target for mitigating platelet-induced inflammation and enhancing recovery in stroke. Harnessing the CDNF pathway may offer a novel therapeutic strategy for stroke intervention.
Collapse
Affiliation(s)
- Jui-Sheng Wu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
| | - Hock-Kean Liew
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, 970 Hualien County, Hualien, Taiwan; Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 970 Hualien County, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 970 Hualien County, Hualien, Taiwan
| | - Vicki Wang
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
| | - Wei-Fen Hu
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, 970 Hualien County, Hualien, Taiwan
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
3
|
Zhao X, Wang Z, Wang J, Xu F, Zhang Y, Han D, Fang W. Mesencephalic astrocyte-derived neurotrophic factor (MANF) alleviates cerebral ischemia/reperfusion injury in mice by regulating microglia polarization via A20/NF-κB pathway. Int Immunopharmacol 2024; 127:111396. [PMID: 38134597 DOI: 10.1016/j.intimp.2023.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Microglia, resident brain immune cells, is critical in inflammation, apoptosis, neurogenesis and neurological recovery during cerebral ischemia/reperfusion (I/R) injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a novel identified endoplasmic reticulum stress-inducible neurotrophic factor, can alleviate I/R injury by reducing the inflammatory reaction, but its specific regulatory mechanism on microglia after ischemic stroke has not been fully clarified. To mimic the process of ischemia/reperfusion in vivo and in vitro, middle cerebral artery occlusion/reperfusion (MCAO/R) was induced in C57BL/6J mice and oxygen glucose deprivation/reoxygenation (OGD/R) model was established in BV-2 cells. Moreover, MANF small interfering RNA (siRNA) was used to silence the expression of endogenous MANF, while recombination human MANF protein (rhMANF) acted as an exogenous supplement. Seventy-two hours after MCAO/R, 2,3,5-triphenyltetrazolium staining, neurological scores, brain water content, immunohistochemical staining, immunofluorescent staining, flow cytometry, hematoxylin and eosin staining, quantitative real-time PCR and western blot are applied to evaluate the protective effect and possible mechanism of MANF on cerebral I/R injury. In vitro, cell viability, inflammatory cytokines and the expression of MANF, A20, NF-κB and the markers of microglia were analyzed. The results showed that MANF decreased brain infarct volume, neurological scores, and brain water content. In addition, MANF promoted the polarization of microglia to an anti-inflammatory phenotype both in vivo and in vitro, which are related to A20/NF-κB pathway. In summary, MANF may offer novel therapeutic approaches for ischemic stroke in the process of microglia polarization.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiang Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Airavaara M, Saarma M. Viral and nonviral approaches. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:83-97. [PMID: 39341664 DOI: 10.1016/b978-0-323-90120-8.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neurodegenerative diseases pose a substantial unmet medical need, and no disease-modifying treatments exist. Neurotrophic factors have been studied for decades as a therapy to slow down or stop the progression of these diseases. In this chapter, we focus on Parkinson disease, the second most common neurodegenerative disorder, and on studies carried out with neurotrophic factors. We explore the routes of administration, how the invasive intracranial administration is the challenge, and different ways to deliver the therapeutic proteins, for example, gene therapy and protein therapy. This therapy concept has been developed to mostly work on the restoration of the lost nigrostriatal dopaminergic neuronal connectivity in the brain. However, in recent years, the center of attention of neurotrophic factors has been on maintaining proteostasis and dissolving and preventing protein inclusions called Lewy bodies. We describe the most studied neurotrophic factor families and compare different preclinical experiments that have been carried out. We also analyze several clinical trials and describe their challenges and breakthroughs and discuss the prospects and challenges of neurotrophic support as a therapy for neurodegenerative diseases. In this chapter, we discuss why they still do and why it is essential to continue to work with this area of neurorestorative research around neurotrophic factors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Zhang S, Meng R, Jiang M, Qing H, Ni J. Emerging Roles of Microglia in Blood-Brain Barrier Integrity in Aging and Neurodegeneration. Curr Neuropharmacol 2024; 22:1189-1204. [PMID: 36740799 PMCID: PMC10964094 DOI: 10.2174/1570159x21666230203103910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly selective interface between the blood and the brain parenchyma. It plays an essential role in maintaining a specialized environment for central nervous system function and homeostasis. The BBB disrupts with age, which contributes to the development of many age-related disorders due to central and peripheral toxic factors or BBB dysfunction. Microglia, the resident innate immune cells of the brain, have recently been explored for their ability to directly and indirectly regulate the integrity of the BBB. This review will focus on the current understanding of the molecular mechanisms utilized by microglia to regulate BBB integrity and how this becomes disrupted in aging and age-associated diseases. We will also discuss the rationale for considering microglia as a therapeutic target to prevent or slow down neurodegeneration.
Collapse
Affiliation(s)
- Simeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Meng
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Muzhou Jiang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Pakarinen E, Lindholm P. CDNF and MANF in the brain dopamine system and their potential as treatment for Parkinson's disease. Front Psychiatry 2023; 14:1188697. [PMID: 37555005 PMCID: PMC10405524 DOI: 10.3389/fpsyt.2023.1188697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 08/10/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by gradual loss of midbrain dopamine neurons, leading to impaired motor function. Preclinical studies have indicated cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) to be potential therapeutic molecules for the treatment of PD. CDNF was proven to be safe and well tolerated when tested in Phase I-II clinical trials in PD patients. Neuroprotective and neurorestorative effects of CDNF and MANF were demonstrated in animal models of PD, where they promoted the survival of dopamine neurons and improved motor function. However, biological roles of endogenous CDNF and MANF proteins in the midbrain dopamine system have been less clear. In addition to extracellular trophic activities, CDNF/MANF proteins function intracellularly in the endoplasmic reticulum (ER), where they modulate protein homeostasis and protect cells against ER stress by regulating the unfolded protein response (UPR). Here, our aim is to give an overview of the biology of endogenous CDNF and MANF in the brain dopamine system. We will discuss recent studies on CDNF and MANF knockout animal models, and effects of CDNF and MANF in preclinical models of PD. To elucidate possible roles of CDNF and MANF in human biology, we will review CDNF and MANF tissue expression patterns and regulation of CDNF/MANF levels in human diseases. Finally, we will discuss novel findings related to the molecular mechanism of CDNF and MANF action in ER stress, UPR, and inflammation, all of which are mechanisms potentially involved in the pathophysiology of PD.
Collapse
Affiliation(s)
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
8
|
Protective mechanisms by glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor against the α-synuclein accumulation in Parkinson's disease. Biochem Soc Trans 2023; 51:245-257. [PMID: 36794783 DOI: 10.1042/bst20220770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
Synucleinopathies constitute a disease family named after alpha-synuclein protein, which is a significant component of the intracellular inclusions called Lewy bodies. Accompanying the progressive neurodegeneration, Lewy bodies and neurites are the main histopathologies of synucleinopathies. The complicated role of alpha-synuclein in the disease pathology makes it an attractive therapeutic target for disease-modifying treatments. GDNF is one of the most potent neurotrophic factors for dopamine neurons, whereas CDNF is protective and neurorestorative with entirely different mechanisms of action. Both have been in the clinical trials for the most common synucleinopathy, Parkinson's disease. With the AAV-GDNF clinical trials ongoing and the CDNF trial being finalized, their effects on abnormal alpha-synuclein accumulation are of great interest. Previous animal studies with an alpha-synuclein overexpression model have shown that GDNF was ineffective against alpha-synuclein accumulation. However, a recent study with cell culture and animal models of alpha-synuclein fibril inoculation has demonstrated the opposite by revealing that the GDNF/RET signaling cascade is required for the protective effect of GDNF on alpha-synuclein aggregation. CDNF, an ER resident protein, was shown to bind alpha-synuclein directly. CDNF reduced the uptake of alpha-synuclein fibrils by the neurons and alleviated the behavioral deficits induced by fibrils injected into the mouse brain. Thus, GDNF and CDNF can modulate different symptoms and pathologies of Parkinson's disease, and perhaps, similarly for other synucleinopathies. Their unique mechanisms for preventing alpha-synuclein-related pathology should be studied more carefully to develop disease-modifying therapies.
Collapse
|
9
|
Augmenting hematoma-scavenging capacity of innate immune cells by CDNF reduces brain injury and promotes functional recovery after intracerebral hemorrhage. Cell Death Dis 2023; 14:128. [PMID: 36792604 PMCID: PMC9932138 DOI: 10.1038/s41419-022-05520-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 02/17/2023]
Abstract
During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.
Collapse
|
10
|
Wang X, Liu X, Chen L, Zhang X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front Immunol 2023; 14:1178113. [PMID: 37187752 PMCID: PMC10175669 DOI: 10.3389/fimmu.2023.1178113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Tourette syndrome (TS) is associated with immunological dysfunction. The DA system is closely related to TS development, or behavioral stereotypes. Previous evidence suggested that hyper-M1-polarized microglia may exist in the brains of TS individuals. However, the role of microglia in TS and their interaction with dopaminergic neurons is unclear. In this study, we applied iminodipropionitrile (IDPN) to establish a TS model and focused on the inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk. Methods Male Sprague-Dawley rats were intraperitoneally injected with IDPN for seven consecutive days. Stereotypic behavior was observed to verify the TS model. Striatal microglia activation was evaluated based on different markers and expressions of inflammatory factors. The striatal dopaminergic neurons were purified and co-cultured with different microglia groups, and dopamine-associated markers were assessed. Results First, there was pathological damage to striatal dopaminergic neurons in TS rats, as indicated by decreased expression of TH, DAT, and PITX3. Next, the TS group showed a trend of increased Iba-1 positive cells and elevated levels of inflammatory factors TNF-α and IL-6, as well as an enhanced M1-polarization marker (iNOS) and an attenuated M2-polarization marker (Arg-1). Finally, in the co-culture experiment, IL-4-treated microglia could upregulate the expression of TH, DAT, and PITX3 in striatal dopaminergic neurons vs LPS-treated microglia. Similarly, the TS group (microglia from TS rats) caused a decreased expression of TH, DAT, and PITX3 compared with the Sham group (microglia from control rats) in the dopaminergic neurons. Conclusion In the striatum of TS rats, microglia activation is M1 hyperpolarized, which transmits inflammatory injury to striatal dopaminergic neurons and disrupts normal dopamine signaling.
Collapse
Affiliation(s)
- Xueming Wang
- Plastic Surgery Department, Fujian Children’s Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiumei Liu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Xiumei Liu,
| | - Liangliang Chen
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
| | - Xiaoling Zhang
- Child Healthcare Department, Fuzhou Maternal and Child Health Hospital, Fuzhou, China
| |
Collapse
|