1
|
Pilz RA, Skowronek D, Ehresmann T, Felbor U, Rath M. Novel postzygotic RASA1 mutation in a patient with Parkes Weber syndrome: A case report and literature review. Clin Case Rep 2024; 12:e9543. [PMID: 39498435 PMCID: PMC11532015 DOI: 10.1002/ccr3.9543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Key Clinical Message Not only germline but also postzygotic mutations in the RASA1 or EPHB4 genes can lead to capillary malformation-arteriovenous malformation (CM-AVM) syndrome. As it is not always possible to clinically distinguish between constitutional variants and postzygotic mosaicism, a sufficiently high sequencing depth must be used in genetic diagnostics to detect both. Abstract Capillary malformation-arteriovenous malformation (CM-AVM) syndrome, with or without Parkes Weber syndrome, is a rare autosomal dominant disease caused by pathogenic RASA1 or EPHB4 variants. Up to 80% of CM-AVM cases have an affected parent. Gene panel sequencing was performed for a 4-year-old girl with multiple CMs, two capillary stains on the left leg, and associated overgrowth of the second toe. We also reviewed published cases with mosaic RASA1 and EPHB4 mutations. A mosaic RASA1 loss-of-function mutation was detected with a variant allele frequency (VAF) of 20% in the blood and oral epithelial cells of the index patient. The literature review illustrates that the severity of the clinical phenotype does not correlate with the VAF. We also identified a germline nonsense variant in the patient's TEK gene. However, inactivating TEK variants do not cause a vascular phenotype but can confer an increased risk for primary congenital glaucoma with variable expressivity. The case presented here illustrates that the choice of the sequencing depth of a diagnostic next-generation sequencing test for CM-AVM patients should always take mosaicism into account and that a good knowledge of the sequenced genes and associated disease mechanisms is necessary for adequate genetic counseling.
Collapse
Affiliation(s)
- Robin A. Pilz
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
| | - Dariush Skowronek
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
| | | | - Ute Felbor
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
| | - Matthias Rath
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
- Institute for Molecular Medicine, MSH Medical School HamburgHamburgGermany
| |
Collapse
|
2
|
Chen H, Sun B, Liu H, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of PIK3CA-related overgrowth spectrum in East asians. Mol Genet Genomics 2024; 299:66. [PMID: 38980418 DOI: 10.1007/s00438-024-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Hongyuan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
3
|
Boccara O, Maruani A. Diagnosis of vascular malformations: Clinical examination first, then molecular biology. J Eur Acad Dermatol Venereol 2024; 38:1232-1233. [PMID: 38924589 DOI: 10.1111/jdv.20091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Olivia Boccara
- Department of Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), APHP, Necker-Enfants Malades Hospital, Paris Centre University, Imagine Institute, Paris University, Paris, France
| | - Annabel Maruani
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC-Tours), CHRU Tours, University of Tours, Tours, France
| |
Collapse
|
4
|
Morren MA, Fodstad H, Brems H, Bedoni N, Guenova E, Jacot-Guillarmod M, Busiah K, Giuliano F, Gilliet M, Atallah I. Mosaic RASopathies concept: different skin lesions, same systemic manifestations? J Med Genet 2024; 61:411-419. [PMID: 38290824 DOI: 10.1136/jmg-2023-109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Cutaneous epidermal nevi are genotypically diverse mosaic disorders. Pathogenic hotspot variants in HRAS, KRAS, and less frequently, NRAS and BRAF may cause isolated keratinocytic epidermal nevi and sebaceous nevi or several different syndromes when associated with extracutaneous anomalies. Therefore, some authors suggest the concept of mosaic RASopathies to group these different disorders. METHODS In this paper, we describe three new cases of syndromic epidermal nevi caused by mosaic HRAS variants: one associating an extensive keratinocytic epidermal nevus with hypomastia, another with extensive mucosal involvement and a third combining a small sebaceous nevus with seizures and intellectual deficiency. Moreover, we performed extensive literature of all cases of syndromic epidermal nevi and related disorders with confirmed pathogenic postzygotic variants in HRAS, KRAS, NRAS or BRAF. RESULTS Most patients presented with bone, ophthalmological or neurological anomalies. Rhabdomyosarcoma, urothelial cell carcinoma and pubertas praecox are also repeatedly reported. KRAS pathogenic variants are involved in 50% of the cases, especially in sebaceous nevi, oculoectodermal syndrome and encephalocraniocutaneous lipomatosis. They are frequently associated with eye and brain anomalies. Pathogenic variants in HRAS are rather present in syndromic keratinocytic epidermal nevi and phacomatosis pigmentokeratotica. CONCLUSION This review delineates genotype/phenotype correlations of syndromic epidermal nevi with somatic RAS and BRAF pathogenic variants and may help improve their follow-up.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Heidi Fodstad
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hilde Brems
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Nicola Bedoni
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martine Jacot-Guillarmod
- Pediatric Gynecology Unit, Department of Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kanetee Busiah
- Pediatric Endocrinology, Diabetology, and Obesity Unit, Department of Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Michel Gilliet
- Dermatology and Venereology Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Zhang B, He R, Xu Z, Sun Y, Wei L, Li L, Liu Y, Guo W, Song L, Wang H, Lin Z, Ma L. Somatic mutation spectrum of a Chinese cohort of pediatrics with vascular malformations. Orphanet J Rare Dis 2023; 18:261. [PMID: 37658401 PMCID: PMC10474751 DOI: 10.1186/s13023-023-02860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/20/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Somatic mutations of cancer driver genes are found to be responsible for vascular malformations with clinical manifestations ranging from cutaneous birthmarks to life-threatening systemic anomalies. Till now, only a limited number of cases and mutations were reported in Chinese population. The purpose of this study was to describe the somatic mutation spectrum of a cohort of Chinese pediatrics with vascular malformations. METHODS Pediatrics diagnosed with various vascular malformations were collected between May 2019 and October 2020 from Beijing Children's Hospital. Genomic DNA of skin lesion of each patient was extracted and sequenced by whole-exome sequencing to identify pathogenic somatic mutations. Mutations with variant allele frequency less than 5% were validated by ultra-deep sequencing. RESULTS A total of 67 pediatrics (33 males, 34 females, age range: 0.1-14.8 years) were analyzed. Exome sequencing identified somatic mutations of corresponding genes in 53 patients, yielding a molecular diagnosis rate of 79.1%. Among 29 PIK3CA mutations, 17 were well-known hotspot p.E542K, p.E545K and p.H1047R/L. Non-hotspot mutations were prevalent in patients with PIK3CA-related overgrowth spectrum, accounting for 50.0% (11/22) of detected mutations. The hotspot GNAQ p.R183Q and TEK p.L914F mutations were responsible for the majority of port-wine stain/Sturge-Weber syndrome and venous malformation, respectively. In addition, we identified a novel AKT1 p.Q79K mutation in Proteus syndrome and MAP3K3 p.E387D mutation in verrucous venous malformation. CONCLUSIONS The somatic mutation spectrum of vascular malformations in Chinese population is similar to that reported in other populations, but non-hotspot PIK3CA mutations may also be prevalent. Molecular diagnosis may help the clinical diagnosis, treatment and management of these pediatric patients with vascular malformations.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China.
| | - Rui He
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yujuan Sun
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Li Wei
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Li Li
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yuanxiang Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Wu Guo
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Li Song
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Guangzhou, 510091, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Guangzhou, 510091, China.
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
6
|
The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012199. [PMID: 36293054 PMCID: PMC9603778 DOI: 10.3390/ijms232012199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular anomalies (VAs) are morphogenesis defects of the vascular system (arteries, capillaries, veins, lymphatic vessels) singularly or in complex combinations, sometimes with a severe impact on the quality of life. The progress made in recent years with the identification of the key molecular pathways (PI3K/AKT/mTOR and RAS/BRAF/MAPK/ERK) and the gene mutations that lead to the appearance of VAs has allowed the deciphering of their complex genetic architecture. Understanding these mechanisms is critical both for the correct definition of the phenotype and classification of VAs, as well as for the initiation of an optimal therapy and the development of new targeted therapies. The purpose of this review is to present in synthesis the current data related to the genetic factors involved in the etiology of VAs, as well as the possible directions for future research. We analyzed the data from the literature related to VAs, using databases (Google Scholar, PubMed, MEDLINE, OMIM, MedGen, Orphanet) and ClinicalTrials.gov. The obtained results revealed that the phenotypic variability of VAs is correlated with genetic heterogeneity. The identification of new genetic factors and the molecular mechanisms in which they intervene, will allow the development of modern therapies that act targeted as a personalized therapy. We emphasize the importance of the geneticist in the diagnosis and treatment of VAs, as part of a multidisciplinary team involved in the management of VAs.
Collapse
|
7
|
Blei F. Update August 2022. Lymphat Res Biol 2022; 20:443-464. [PMID: 35993922 DOI: 10.1089/lrb.2022.29127.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Terry M, Wakeman K, Williams BJ, Miller DM, Sak M, Abdullaev Z, Pacheco MC, Aldape K, Lehman NL. Malignant melanotic nerve sheath tumor with PRKAR1A, KMT2C, and GNAQ mutations. FREE NEUROPATHOLOGY 2022; 3:21. [PMID: 37284154 PMCID: PMC10209877 DOI: 10.17879/freeneuropathology-2022-3864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/12/2022] [Indexed: 06/08/2023]
Abstract
Malignant melanotic nerve sheath tumor (MMNST) is a rare and potentially aggressive lesion defined in the 2021 WHO Classification of Tumors of the Central Nervous System. MMNST demonstrate overlapping histologic and clinical features of schwannoma and melanoma. MMNST often harbor PRKAR1A mutations, especially within the Carney Complex. We present a case of aggressive MMNST of the sacral region in a 48-year-old woman. The tumor contained PRKAR1A frameshift pR352Hfs*89, KMT2C splice site c.7443-1G>T and GNAQ p.R183L missense mutations, as well as BRAF and MYC gains. Genomic DNA methylation analysis using the Illumina 850K EpicBead chip revealed that the lesion did not match an established methylation class; however, uniform manifold approximation and projection (UMAP) placed the tumor very near schwannomas. The tumor expressed PD-L1, and the patient was treated with radiation and immune checkpoint inhibitors following en bloc resection. Although she had symptomatic improvement, she suffered early disease progression with local recurrence, and distant metastases, and died 18 months after resection. It has been suggested that the presence of GNAQ mutations can differentiate leptomeningeal melanocytic neoplasms and uveal melanoma from MMNST. This case and others demonstrate that GNAQ mutations may exist in malignant nerve sheath tumors; that GNAQ and PRKAR1A mutations are not always mutually exclusive and that neither can be used to differentiate MMNST or MPNST from all melanocytic lesions.
Collapse
Affiliation(s)
- Merryl Terry
- Departments of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Kristina Wakeman
- Departments of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Brian J. Williams
- Neurological Surgery, University of Louisville, Louisville, KY, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Donald M. Miller
- Internal Medicine, University of Louisville, Louisville, KY, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Müge Sak
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marwil C. Pacheco
- Departments of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Norman L. Lehman
- Departments of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| |
Collapse
|