1
|
Menendez-Gonzalez M. Targeting Soluble Amyloid Oligomers in Alzheimer's Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases 2025; 13:17. [PMID: 39851481 PMCID: PMC11764272 DOI: 10.3390/diseases13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVE Neurotoxic soluble amyloid-β (Aβ) oligomers are key drivers of Alzheimer's pathology, with evidence suggesting that early targeting of these soluble forms may slow disease progression. Traditional intravenous (IV) monoclonal antibodies (mAbs) face challenges, including limited brain penetration and risks such as amyloid-related imaging abnormalities (ARIA). This hypothetical study aimed to model amyloid dynamics in early-to-moderate Alzheimer's disease (AD) and compare the efficacy of IV mAn with intrathecal pseudodelivery, a novel method that confines mAbs in a subcutaneous reservoir for selective amyloid clearance in cerebrospinal fluid (CSF) without systemic exposure. METHODS A mathematical framework was employed to simulate Aβ dynamics in patients with early-to-moderate AD. Two therapeutic approaches were compared: IV mAb and intrathecal pseudodelivery of mAb. The model incorporated amyloid kinetics, mAb affinity, protofibril size, and therapy-induced clearance rates to evaluate the impact of both methods on amyloid reduction, PET negativity timelines, and the risk of ARIA. RESULTS Intrathecal pseudodelivery significantly accelerated Aβ clearance compared to IV administration, achieving amyloid PET scan negativity by month 132, as opposed to month 150 with IV mAb. This method demonstrated no ARIA risk and reduced amyloid reaccumulation. By targeting soluble Aβ species more effectively, intrathecal pseudodelivery emerged as a safer and more efficient strategy for early AD intervention. CONCLUSIONS Intrathecal pseudodelivery offers a promising alternative to IV mAbs, overcoming challenges associated with blood-brain barrier penetration and systemic side effects. Further research should focus on optimizing this approach and exploring combination therapies to enhance clinical outcomes in AD.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Servicio de Neurología, Hospital Universitario Central de Asturias, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
2
|
Menendez-Gonzalez M. Intrathecal Immunoselective Nanopheresis for Alzheimer's Disease: What and How? Why and When? Int J Mol Sci 2024; 25:10632. [PMID: 39408961 PMCID: PMC11476806 DOI: 10.3390/ijms251910632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Nanotechnology is transforming therapeutics for brain disorders, especially in developing drug delivery systems. Intrathecal immunoselective nanopheresis with soluble monoclonal antibodies represents an innovative approach in the realm of drug delivery systems for Central Nervous System conditions, especially for targeting soluble beta-amyloid in Alzheimer's disease. This review delves into the concept of intrathecal immunoselective nanopheresis. It provides an overall description of devices to perform this technique while discussing the nanotechnology behind its mechanism of action, its potential advantages, and clinical implications. By exploring current research and advancements, we aim to provide a comprehensive understanding of this novel method, addressing the critical questions of what it is, how it works, why it is needed, and when it should be applied. Special attention is given to patient selection and the optimal timing for therapy initiation in Alzheimer's, coinciding with the peak accumulation of amyloid oligomers in the early stages. Potential limitations and alternative targets beyond beta-amyloid and future perspectives for immunoselective nanopheresis are also described.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Hospital Universitario Central de Asturias, Servicio de Neurología, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
3
|
Schreiner TG, Croitoru CG, Hodorog DN, Cuciureanu DI. Passive Anti-Amyloid Beta Immunotherapies in Alzheimer's Disease: From Mechanisms to Therapeutic Impact. Biomedicines 2024; 12:1096. [PMID: 38791059 PMCID: PMC11117736 DOI: 10.3390/biomedicines12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease, the most common type of dementia worldwide, lacks effective disease-modifying therapies despite significant research efforts. Passive anti-amyloid immunotherapies represent a promising avenue for Alzheimer's disease treatment by targeting the amyloid-beta peptide, a key pathological hallmark of the disease. This approach utilizes monoclonal antibodies designed to specifically bind amyloid beta, facilitating its clearance from the brain. This review offers an original and critical analysis of anti-amyloid immunotherapies by exploring several aspects. Firstly, the mechanisms of action of these therapies are reviewed, focusing on their ability to promote Aβ degradation and enhance its efflux from the central nervous system. Subsequently, the extensive history of clinical trials involving anti-amyloid antibodies is presented, from initial efforts using first-generation molecules leading to mixed results to recent clinically approved drugs. Along with undeniable progress, the authors also highlight the pitfalls of this approach to offer a balanced perspective on this topic. Finally, based on its potential and limitations, the future directions of this promising therapeutic strategy for Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Cristina Georgiana Croitoru
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Immunology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Nicoleta Hodorog
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Dan Iulian Cuciureanu
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
4
|
Schreiner TG, Menéndez-González M, Adam M, Popescu BO, Szilagyi A, Stanciu GD, Tamba BI, Ciobanu RC. A Nanostructured Protein Filtration Device for Possible Use in the Treatment of Alzheimer's Disease-Concept and Feasibility after In Vivo Tests. Bioengineering (Basel) 2023; 10:1303. [PMID: 38002427 PMCID: PMC10669467 DOI: 10.3390/bioengineering10111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), along with other neurodegenerative disorders, remains a challenge for clinicians, mainly because of the incomplete knowledge surrounding its etiology and inefficient therapeutic options. Considering the central role of amyloid beta (Aβ) in the onset and evolution of AD, Aβ-targeted therapies are among the most promising research directions. In the context of decreased Aβ elimination from the central nervous system in the AD patient, the authors propose a novel therapeutic approach based on the "Cerebrospinal Fluid Sink Therapeutic Strategy" presented in previous works. This article aims to demonstrate the laborious process of the development and testing of an effective nanoporous ceramic filter, which is the main component of an experimental device capable of filtrating Aβ from the cerebrospinal fluid in an AD mouse model. METHODS First, the authors present the main steps needed to create a functional filtrating nanoporous ceramic filter, which represents the central part of the experimental filtration device. This process included synthesis, functionalization, and quality control of the functionalization, which were performed via various spectroscopy methods and thermal analysis, selectivity measurements, and a biocompatibility assessment. Subsequently, the prototype was implanted in APP/PS1 mice for four weeks, then removed, and the nanoporous ceramic filter was tested for its filtration capacity and potential structural damages. RESULTS In applying the multi-step protocol, the authors developed a functional Aβ-selective filtration nanoporous ceramic filter that was used within the prototype. All animal models survived the implantation procedure and had no significant adverse effects during the 4-week trial period. Post-treatment analysis of the nanoporous ceramic filter showed significant protein loading, but no complete clogging of the pores. CONCLUSIONS We demonstrated that a nanoporous ceramic filter-based system that filtrates Aβ from the cerebrospinal fluid is a feasible and safe treatment modality in the AD mouse model. The presented prototype has a functional lifespan of around four weeks, highlighting the need to develop advanced nanoporous ceramic filters with anti-biofouling properties to ensure the long-term action of this therapy.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Manuel Menéndez-González
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33006 Oviedo, Spain
| | - Maricel Adam
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Bogdan Ionel Tamba
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
5
|
Pérez-Martín E, Coto-Vilcapoma A, Castilla-Silgado J, Rodríguez-Cañón M, Prado C, Álvarez G, Álvarez-Vega MA, Fernández-García B, Menéndez-González M, Tomás-Zapico C. Refining Stereotaxic Neurosurgery Techniques and Welfare Assessment for Long-Term Intracerebroventricular Device Implantation in Rodents. Animals (Basel) 2023; 13:2627. [PMID: 37627418 PMCID: PMC10452028 DOI: 10.3390/ani13162627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Stereotaxic surgeries enable precise access to specific brain regions, being of particular interest for chronic intracerebroventricular drug delivery. However, the challenge of long-term studies at this level is to allow the implantation of drug storage devices and their correct intrathecal connection while guaranteeing animal welfare during the entire study period. In this study, we propose an optimized method for safe intrathecal device implantation, focusing on preoperative, intraoperative, and postoperative procedures, following the 3Rs principle and animal welfare regulations. Our optimized protocol introduces three main refinements. Firstly, we modify the dimensions of the implantable devices, notably diminishing the device-to-mouse weight ratio. Secondly, we use a combination of cyanoacrylate tissue adhesive and UV light-curing resin, which decreases surgery time, improves healing, and notably minimizes cannula detachment or adverse effects. Thirdly, we develop a customized welfare assessment scoresheet to accurately monitor animal well-being during long-term implantations. Taken together, these refinements positively impacted animal welfare by minimizing the negative effects on body weight, surgery-related complications, and anxiety-like behaviors. Overall, the proposed refinements have the potential to reduce animal use, enhance experimental data quality, and improve reproducibility. Additionally, these improvements can be extended to other neurosurgical techniques, thereby advancing neuroscience research, and benefiting the scientific community.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Catuxa Prado
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Gabriel Álvarez
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Marco Antonio Álvarez-Vega
- Departamento de Cirugía, Área de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
- Servicio de Neurocirugía, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Benjamín Fernández-García
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Área de Anatomía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Manuel Menéndez-González
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
6
|
Menéndez González M. Mechanical filtration of the cerebrospinal fluid: procedures, systems, and applications. Expert Rev Med Devices 2023; 20:199-207. [PMID: 36799735 DOI: 10.1080/17434440.2023.2181695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
INTRODUCTION Mechanical methods aimed at the filtration of the cerebrospinal fluid (CSF) are a group of therapies that have been proposed to treat neurological conditions where pathogens are present in the CSF. Even though the industry of medical devices has not been very active in this field, there is a lack of systematization of the different systems and procedures that can be applied. AREAS COVERED First, we systematize the classification and definitions of procedures and systems for mechanical filtration of the CSF. Then, we made a literature review in search of clinical or preclinical studies where any system of mechanical CSF clearance was proposed or applied. EXPERT OPINION We found mechanical filtration of the CSF has been explored in subarachnoid hemorrhage, CNS infections (bacterial, viral, and fungal), meningeal carcinomatosis, multiple sclerosis, autoimmune encephalitis, and polyradiculomyelitis. Brain aging and neurodegenerative diseases are additional potential conditions of interest. While there is some preliminary positive evidence for many of these conditions, more advanced systems, detailed descriptions of procedures, and rigorous validations are needed to make these therapies a reality in the next decades.
Collapse
Affiliation(s)
- Manuel Menéndez González
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Grupo de Investigación Clínica-Básica en Neurología, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
7
|
Intrathecal Pseudodelivery of Drugs in the Therapy of Neurodegenerative Diseases: Rationale, Basis and Potential Applications. Pharmaceutics 2023; 15:pharmaceutics15030768. [PMID: 36986629 PMCID: PMC10059785 DOI: 10.3390/pharmaceutics15030768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Intrathecal pseudodelivery of drugs is a novel route to administer medications to treat neurodegenerative diseases based on the CSF-sink therapeutic strategy by means of implantable devices. While the development of this therapy is still in the preclinical stage, it offers promising advantages over traditional routes of drug delivery. In this paper, we describe the rationale of this system and provide a technical report on the mechanism of action, that relies on the use of nanoporous membranes enabling selective molecular permeability. On one side, the membranes do not permit the crossing of certain drugs; whereas, on the other side, they permit the crossing of target molecules present in the CSF. Target molecules, by binding drugs inside the system, are retained or cleaved and subsequently eliminated from the central nervous system. Finally, we provide a list of potential indications, the respective molecular targets, and the proposed therapeutic agents.
Collapse
|
8
|
Kim SE, Kim HJ, Jang H, Weiner MW, DeCarli C, Na DL, Seo SW. Interaction between Alzheimer's Disease and Cerebral Small Vessel Disease: A Review Focused on Neuroimaging Markers. Int J Mol Sci 2022; 23:10490. [PMID: 36142419 PMCID: PMC9499680 DOI: 10.3390/ijms231810490] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) and tau, and subcortical vascular cognitive impairment (SVCI) is characterized by cerebral small vessel disease (CSVD). They are the most common causes of cognitive impairment in the elderly population. Concurrent CSVD burden is more commonly observed in AD-type dementia than in other neurodegenerative diseases. Recent developments in Aβ and tau positron emission tomography (PET) have enabled the investigation of the relationship between AD biomarkers and CSVD in vivo. In this review, we focus on the interaction between AD and CSVD markers and the clinical effects of these two markers based on molecular imaging studies. First, we cover the frequency of AD imaging markers, including Aβ and tau, in patients with SVCI. Second, we discuss the relationship between AD and CSVD markers and the potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia. Next, we discuss the clinical effects of AD and CSVD markers in SVCI, and hemorrhagic markers in cerebral amyloid angiopathy. Finally, this review provides both the current challenges and future perspectives for SVCI.
Collapse
Affiliation(s)
- Si Eun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan 48108, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco, CA 94121, USA
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
9
|
Coto-Vilcapoma MA, Castilla-Silgado J, Fernández-García B, Pinto-Hernández P, Cipriani R, Capetillo-Zarate E, Menéndez-González M, Álvarez-Vega M, Tomás-Zapico C. New, Fully Implantable Device for Selective Clearance of CSF-Target Molecules: Proof of Concept in a Murine Model of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23169256. [PMID: 36012525 PMCID: PMC9408974 DOI: 10.3390/ijms23169256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously proposed a radical change in the current strategy to clear pathogenic proteins from the central nervous system (CNS) based on the cerebrospinal fluid (CSF)-sink therapeutic strategy, whereby pathogenic proteins can be removed directly from the CNS via CSF. To this aim, we designed and manufactured an implantable device for selective and continuous apheresis of CSF enabling, in combination with anti-amyloid-beta (Aβ) monoclonal antibodies (mAb), the clearance of Aβ from the CSF. Here, we provide the first proof of concept in the APP/PS1 mouse model of Alzheimer’s disease (AD). Devices were implanted in twenty-four mice (seventeen APP/PS1 and seven Wt) with low rates of complications. We confirmed that the apheresis module is permeable to the Aβ peptide and impermeable to mAb. Moreover, our results showed that continuous clearance of soluble Aβ from the CSF for a few weeks decreases cortical Aβ plaques. Thus, we conclude that this intervention is feasible and may provide important advantages in terms of safety and efficacy.
Collapse
Affiliation(s)
- María Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Área de Anatomía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Paola Pinto-Hernández
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Raffaela Cipriani
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Manuel Menéndez-González
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina Área de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence:
| | - Marco Álvarez-Vega
- Servicio de Neurocirugía, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Cirugía, Área de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| |
Collapse
|