1
|
Léost F, Potiron V, Lepareur N, Rbah-Vidal L, Garcion E, Dumas F, Chérel M, Tripier R, Barbet J. ["Optimizing Imaging and Dose-Response in Radiotherapies" XVIth workshop organised by the Cancéropôle Grand-Ouest's "Vectorisation, Imagerie, Radiothérapies" network - 4-7 October 2023, Erquy, France]. Bull Cancer 2025; 112:435-445. [PMID: 39988486 DOI: 10.1016/j.bulcan.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
The sixteenth edition of the international workshop organized by "Tumour Targeting & Radiotherapies" network of the Cancéropôle Grand-Ouest focused on the problem of optimizing the dose-effect relationships of internal and external radiotherapy, using a variety of innovations from different disciplines, such as technological and imaging advances, vectorization, artificial intelligence, modeling and combined therapies.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | - Vincent Potiron
- Institut de cancérologie de l'Ouest, site de Saint-Herblain, Saint-Herblain, France; CNRS, US2B, UMR 6286, Nantes université, 44000 Nantes, France
| | - Nicolas Lepareur
- Inrae, Inserm, CLCC Eugène-Marquis, Institut Nutrition, Métabolismes et Cancer (NUMECAN), UMR_A 1341, UMR_S 1241, université de Rennes, Rennes, France
| | - Latifa Rbah-Vidal
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, université d'Angers, 44000 Nantes, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, Nantes université, 49000 Angers, France
| | - Florence Dumas
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, Nantes université, 49000 Angers, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, université d'Angers, 44000 Nantes, France
| | - Raphaël Tripier
- UMR CNRS-UBO 6521 CEMCA, université de Brest, 6, avenue V.-Le-Gorgeu, 29200 Brest, France
| | | |
Collapse
|
2
|
Elbeltagi S, Abdel Shakor AB, M Alharbi H, Tawfeek HM, Aldosari BN, E Eldin Z, Amin BH, Abd El-Aal M. Synergistic effects of quercetin-loaded CoFe 2O 4@Liposomes regulate DNA damage and apoptosis in MCF-7 cancer cells: based on biophysical magnetic hyperthermia. Drug Dev Ind Pharm 2024; 50:561-575. [PMID: 38832870 DOI: 10.1080/03639045.2024.2363231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, New Valley, Egypt
| | - Abo Bakr Abdel Shakor
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- School of biotechnology, Badr University in Assiut (BUA), Egypt
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham M Tawfeek
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zienab E Eldin
- Department of Material Science and nanotechnology, (PSAS), Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Center for Material Science, Zewail City of Science and Technology, Giza, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology (RCMB), Al - Azhar University, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Azevedo A, Coelho MP, Pinho JO, Soares PIP, Reis CP, Borges JP, Gaspar MM. An alternative hybrid lipid nanosystem combining cytotoxic and magnetic properties as a tool to potentiate antitumor effect of 5-fluorouracil. Life Sci 2024; 344:122558. [PMID: 38471621 DOI: 10.1016/j.lfs.2024.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
AIMS Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.
Collapse
Affiliation(s)
- Afonso Azevedo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Mariana P Coelho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina P Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - João P Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
M E Gaafar P, Farid RM, Hazzah HA, AbouKilila HY, Helmy MW, Abdallah OY. Magnetic Lipid-Based hybrid nanosystems: A combined stimuli- responsive nanocarriers for enriched chemotherapeutic potential of L-carnosine in induced breast Ehrlich ascites tumor model. Int J Pharm 2024; 655:124000. [PMID: 38493840 DOI: 10.1016/j.ijpharm.2024.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - HussamElDin Y AbouKilila
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment. Pharmaceutics 2022; 14:pharmaceutics14112501. [PMID: 36432692 PMCID: PMC9697793 DOI: 10.3390/pharmaceutics14112501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The combination of magnetic hyperthermia with chemotherapy is considered a promising strategy in cancer therapy due to the synergy between the high temperatures and the chemotherapeutic effects, which can be further developed for targeted and remote-controlled drug release. In this paper we report a simple, rapid, and reproducible method for the preparation of thermosensitive magnetoliposomes (TsMLs) loaded with doxorubicin (DOX), consisting of a lipidic gel formation from a previously obtained water-in-oil microemulsion with fine aqueous droplets containing magnetic nanoparticles (MNPs) dispersed in an organic solution of thermosensitive lipids (transition temperature of ~43 °C), followed by the gel hydration with an aqueous solution of DOX. The obtained thermosensitive magnetoliposomes (TsMLs) were around 300 nm in diameter and exhibited 40% DOX incorporation efficiency. The most suitable MNPs to incorporate into the liposomal aqueous lumen were Zn ferrites, with a very low coercive field at 300 K (7 kA/m) close to the superparamagnetic regime, exhibiting a maximum absorption rate (SAR) of 1130 W/gFe when dispersed in water and 635 W/gFe when confined inside TsMLs. No toxicity of Zn ferrite MNPs or of TsMLs was noticed against the A459 cancer cell line after 48 h incubation over the tested concentration range. The passive release of DOX from the TsMLs after 48h incubation induced a toxicity starting with a dosage level of 62.5 ug/cm2. Below this threshold, the subsequent exposure to an alternating magnetic field (20-30 kA/m, 355 kHz) for 30 min drastically reduced the viability of the A459 cells due to the release of incorporated DOX. Our results strongly suggest that TsMLs represent a viable strategy for anticancer therapies using the magnetic field-controlled release of DOX.
Collapse
|
6
|
Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia. Int J Mol Sci 2022; 23:ijms232214145. [PMID: 36430620 PMCID: PMC9695608 DOI: 10.3390/ijms232214145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Superparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaxMn1-xFe2O4) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology. Consequently, changes were obtained in the optical and magnetic properties that were studied through UV-Vis absorption and SQUID, respectively. XRD and Raman spectroscopy studies were carried out to assess the microstructural changes associated with stoichiometry of the particles, and the stability in physiological pH was studied through DLS. The nanoparticles displayed high values of magnetization and heating efficiency for several alternating magnetic field conditions, compatible with biological applications. Hereby, the employed method provides a promising strategy for the development of particles with adequate properties for magnetic hyperthermia applications, such as drug delivery and cancer therapy.
Collapse
|
7
|
Toro-Córdova A, Llaguno-Munive M, Jurado R, Garcia-Lopez P. The Therapeutic Potential of Chemo/Thermotherapy with Magnetoliposomes for Cancer Treatment. Pharmaceutics 2022; 14:2443. [PMID: 36432634 PMCID: PMC9697689 DOI: 10.3390/pharmaceutics14112443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer represents a very grave and quickly growing public health problem worldwide. Despite the breakthroughs in treatment and early detection of the disease, an increase is projected in the incidence rate and mortality during the next 30 years. Thus, it is important to develop new treatment strategies and diagnostic tools. One alternative is magnetic hyperthermia, a therapeutic approach that has shown promising results, both as monotherapy and in combination with chemo- and radiotherapy. However, there are still certain limitations and questions with respect to the safety of the systemic administration of magnetic nanoparticles. To deal with these issues, magnetoliposomes were conceived as a new generation of liposomes that incorporate superparamagnetic nanoparticles and oncological pharmaceuticals within their structure. They have the advantage of targeted and selective drug delivery to the diseased organs and tissues. Some of them can avoid the immune response of the host. When exposed to a magnetic field of alternating current, magnetoliposomes produce hyperthermia, which acts synergistically with the released drug. The aim of the present review is to describe the most recent advances in the use of magnetoliposomes and point out what research remains to be done for their application to chemo-thermal therapy in cancer patients.
Collapse
Affiliation(s)
- Alfonso Toro-Córdova
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd, Mexico City 14080, Mexico
- Departamento de Formulación de Vacunas de mRNA, CerTest Biotec S.L., 50840 Zaragoza, Spain
| | - Monserrat Llaguno-Munive
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd, Mexico City 14080, Mexico
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd, Mexico City 14080, Mexico
| | - Rafael Jurado
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd, Mexico City 14080, Mexico
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd, Mexico City 14080, Mexico
| |
Collapse
|