1
|
Alshahrani MY, Al Amri FS, Alzahrani MA, Alshahrani AS, Abdel Kader DH, Almasabi F, Zafrah H, Dallak M, Osman OM, Al-Ani B, Alzamil NM. Metformin ameliorates diabetes-induced hepatic ultrastructural damage and the immune biomarker CD86 and inflammation in rats. Ultrastruct Pathol 2025; 49:58-66. [PMID: 39663585 DOI: 10.1080/01913123.2024.2440479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Diabetes is a known inducer of hepatic ultrastructural alterations, and the expression of the immune biomarker that involves in T-cell immunity, cluster of differentiation 86 (CD86) is increased in diabetic patients with liver cirrhosis. The antidiabetic drug metformin has not previously been used to protect against type 2 diabetes mellitus (T2DM)-induced alternations in hepatic ultrastructure and the induction of the hepatic CD86/inflammation axis in diabetic animal models induced by streptozotocin and a high fat diet. To test our hypotheses, T2DM was induced in rats (model group) and the protective animals were treated with the antidiabetic drug metformin (200 mg/kg) until being sacrificed at week 12. A profound ultrastructural damage to the hepatocytes and liver tissue injury was induced by T2DM as demonstrated by hepatocytes with dark shrunken irregular nuclei, rarefied cytoplasm with lipid droplets, mitochondria with disrupted cristae, as well as depletion of glycogen granules and damaged of liver architecture, which were effectively (p < .0001) protected with metformin. Metformin also suppressed diabetes-induced hepatic gene expression of CD86 and inflammation as well as glycemia and liver injury markers. Furthermore, a significant correlation between hepatocyte damage and CD86, inflammation, glycemia, and biomarkers of liver injury was observed. These findings demonstrate that diabetes is associated with the induction of the hepatic CD86/inflammation axis and hepatocyte ultrastructural alterations while being protected by metformin.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad S Al Amri
- Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alzahrani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdulaziz S Alshahrani
- Department of Internal Medicine, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Dina H Abdel Kader
- Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Faris Almasabi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Osama M Osman
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M Alzamil
- Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Fung AA, Li Z, Boote C, Markov P, Jain S, Shi L. Label-Free Optical Biopsy Reveals Biomolecular and Morphological Features of Diabetic Kidney Tissue in 2D and 3D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620507. [PMID: 39553929 PMCID: PMC11565847 DOI: 10.1101/2024.10.27.620507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kidney disease, the ninth leading cause of death in the United States, has one of the poorest diagnostic efficiencies of only 10% 1 . Conventional diagnostic methods often rely on light microscopy analysis of 2D fixed tissue sections with limited molecular insight compared to omics studies. Targeting multiple features in a biopsy using molecular or chemical reagents can enhance molecular phenotyping but are limited by overlap of their spatial and chromatic properties, variations in quality of the products, limited multimodal nature and need additional tissue processing. To overcome these limitations and increase the breadth of molecular information available from tissue without an impact on routine diagnostic workup, we implemented label-free imaging modalities including stimulated Raman scattering (SRS) microscopy, second harmonic generation (SHG), and two photon fluorescence (TPF) into a single microscopy setup. We visualized and identified morphological, structural, lipidomic, and metabolic biomarkers of control and diabetic human kidney biopsy samples in 2D and 3D at a subcellular resolution. The label-free biomarkers, including collagen fiber morphology, mesangial-glomerular fractional volume, lipid saturation, redox status, and relative lipid and protein concentrations in the form of Stimulated Raman Histology (SRH), illustrate distinct features in kidney disease tissues not previously appreciated. The same tissue section can be used for routine diagnostic work up thus enhancing the power of cliniopathological insights obtainable without compromising already limited tissue. The additional multimodal biomarkers and metrics are broadly applicable and deepen our understanding of the progression of kidney diseases by integrating lipidomic, fibrotic, and metabolic data. Abstract Figure
Collapse
|
3
|
Yang X, Zheng L, Huo J, Hu W, Liu B, Fan Q, Zheng W, Wang Q. Combined Analysis of Second- and Third-Generation Transcriptome Sequencing for Gene Characteristics and Identification of Key Splicing Variants in Wound Healing of Ganxi Goat Skin. Animals (Basel) 2024; 14:3085. [PMID: 39518808 PMCID: PMC11544938 DOI: 10.3390/ani14213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ganxi goat is a local breed of goat unique to Jiangxi Province, China, named for its primary distribution in the Ganxi region. Ganxi goats are primarily raised through grazing, showing good adaptation to the local humid and hot climate, strong disease resistance, and occupying an important position in the local livestock industry. The skin, as the main barrier of the body, plays an indispensable role in resisting the invasion of external pathogenic factors and has received increasing attention in the medical and scientific fields. In this study, Ganxi goat skin was used as the research subject. Full-length transcriptome sequencing of Ganxi goat skin was performed using PacBio third-generation sequencing technology to supplement and improve the annotation information of the Ganxi goat genome. A combined analysis of second- and third-generation transcriptome sequencing was used to analyze the splicing variant events of hub genes (CDC20, MMP2, TIMP1, and EDN1) and the expression changes in each splicing variant in skin samples on day 0 and day 5 after surgical wounding. The regulatory role of related hub gene splicing variants in wound healing was analyzed. A total of 926,667 full-length non-chimeric sequences were obtained, optimizing the annotation information of 3794 genomic gene loci and identifying 2834 new genes, 256 new LncRNAs, 12,283 alternative splicing events, 549 genes with polyadenylation, and 112 fusion genes. Three splicing variant forms were identified in both the CDC20 and EDN1 genes, seven in MMP2, and two in TIMP1. The expression levels of most splicing variants showed significant changes in the skin samples on days 0 and 5 after wounding, potentially participating in the regulation of wound healing. This study provides fundamental data for the annotation of the goat genome and offers a reference for studying the regulatory mechanisms of wound healing.
Collapse
Affiliation(s)
- Xue Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Lucheng Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China;
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Qingcan Fan
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Wenya Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Qianqian Wang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| |
Collapse
|
4
|
Valle-Velázquez E, Zambrano-Vásquez OR, Cortés-Camacho F, Sánchez-Lozada LG, Guevara-Balcázar G, Osorio-Alonso H. Naringenin - a potential nephroprotective agent for diabetic kidney disease: A comprehensive review of scientific evidence. BIOMOLECULES & BIOMEDICINE 2024; 24:1441-1451. [PMID: 38907737 PMCID: PMC11496875 DOI: 10.17305/bb.2024.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential therapeutic option for diabetes-induced CKD.
Collapse
Affiliation(s)
- Estefania Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Oscar René Zambrano-Vásquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Fernando Cortés-Camacho
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Gustavo Guevara-Balcázar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
A-Elgadir TME, Shati AA, Alqahtani SA, Ebrahim HA, Almohaimeed HM, ShamsEldeeen AM, Haidara MA, Kamar SS, Dawood AF, El-Bidawy MH. Mesenchymal stem cells improve cardiac function in diabetic rats by reducing cardiac injury biomarkers and downregulating JAK/STAT/iNOS and iNOS/Apoptosis signaling pathways. Mol Cell Endocrinol 2024; 591:112280. [PMID: 38797354 DOI: 10.1016/j.mce.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular complications are prevalent manifestations of type 2 diabetes mellitus (T2DM) and are usually the main cause of death. This study aims to show the underlying mechanisms of the potential therapeutic effect of mesenchymal stem cells (MSCs) on diabetic cardiac dysfunction. Twenty-four male Wistar rats were randomly assigned to one of three groups The control group received standard laboratory chow, and the groups with T2DM received a single dose of 45 mg/kg body weight of streptozotocin (STZ) after 3 weeks of pretreatment with a high-fat diet (HFD). Eight weeks after the diagnosis of T2DM, rats were divided into two groups: the T2DM model group and the T2DM + MSCs group. BM-MSCs were administered systemically at 2 × 106 cells/rat doses. A Significant amelioration in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and dyslipidemia was noted 2 weeks post-administration of MSCs. Administration of MSCs improved dyslipidemia, the altered cardiac injury biomarkers (p ≤ 0.0001), downregulated Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3)/inducible Nitric oxide synthase (iNOS) and iNOS/Apoptosis signaling pathways. This was associated with improved cardiac dysfunction (impaired left ventricular performance and decreased contractility index). Our results show that MSCs ameliorate cardiac dysfunction associated with diabetic cardiomyopathy by lowering dyslipidemia and insulin resistance, inhibiting oxidative stress, and inflammation, downregulating JAK2/STAT3/iNOS and iNOS/Apoptosis signaling pathways.
Collapse
Affiliation(s)
| | - Ayed A Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saif Aboud Alqahtani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Asmaa M ShamsEldeeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa S Kamar
- Department of Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Histology, Armed Forces College of Medicine
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Mahmoud H El-Bidawy
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of BMS, Physiology Division, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
6
|
Bolat I, Terim–Kapakin KA, Apaydin Yildirim B, Manavoğlu Kirman E. Protective effect of Helichrysum plicatum on head shock protein inflammation and apoptosis in Gentamicin induced nephrotoxicity. REVISTA CIENTÍFICA DE LA FACULTAD DE CIENCIAS VETERINARIAS 2024; XXXIV:1-9. [DOI: 10.52973/rcfcv-e34388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic the most common used in the treatment of infectious diseases in humans and animals. However, GM causes damage to many tissues and organs in the body, especially the kidneys. Helichrysum plicatum (Hp), native to the Balkans and Anatolia, is a plant used in various diseases such as diabetes, liver and kidney damage. In this study, Male Spraque Dawley rats (n=36 and 200–250 g) were randomly divided into 6 experimental groups: Group 1: Control; received normal saline (intraperitoneally –i.p.–), Group 2: Hp (100 mg·kg–1 day i.p.), Group 3: Hp (200 mg·kg–1 day i.p.), Group 4: GM (80 mg·kg–1 day i.p.), Group 5: GM 80 + Hp 100 (mg·kg–1 day i.p.), and Group 6: GM 80 + Hp 200 (mg·kg–1 day i.p.). Then kidney tissue samples were collected for evaluations. All of our results showed that Hp (100 mg·kg–1 day) reduced the levels of pro–inflammatory cytokines such as IL–8, IL–6, and TNF– while increasing the level of anti–inflammatory cytokine IL–10. It was also observed that Hp reduced the expressions of the caspase3, NOS and Heat shock proteins such as Hsp27 and Hsp70. With this study, we have shown that Hp probably due to its chemical properties has a protective effect against GM induced nephrototoxicity by reducing the values stated above to normal values.
Collapse
Affiliation(s)
- Ismail Bolat
- Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
| | | | - Betul Apaydin Yildirim
- Atatürk University, Faculty of Veterinary Medicine, Departments of Biochemistry. Erzurum, Türkiye
| | - Esra Manavoğlu Kirman
- Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
| |
Collapse
|
7
|
Liu Y, Zhang R, Zou J, Yin H, Zhao M, Zhao L. The impact of chitooligosaccharides with a certain degree of polymerization on diabetic nephropathic mice and high glucose-damaged HK-2 cells. Food Sci Nutr 2024; 12:4173-4184. [PMID: 38873468 PMCID: PMC11167136 DOI: 10.1002/fsn3.4078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/15/2024] Open
Abstract
Diabetic nephropathy (DN) is a primary diabetic complication ascribed to the pathological changes in renal microvessels. This study investigated the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch ECH associating protein (Keap1)/antioxidant response element (ARE) signaling pathway impact of chitooligosaccharides (COS) with a certain degree of polymerization (DP) on DN mouse models and high glucose-damaged human kidney 2 (HK-2) cells. The findings indicated that COS effectively reduced the renal function indexes (uric acid [UA], urinary albumin excretion rate [UAER], urine albumin-to-creatinine ratio [UACR], blood urea nitrogen [BUN], and creatinine [Cre]) of DN mice. It increased (p < .05) the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) antioxidant enzyme activity in the serum and kidneys, and decreased (p < .05) the malondialdehyde (MDA) content. The mechanistic investigation showed that COS significantly increased (p < .05) Nrf2 and downstream target gene (GCLM, GCLC, HO-1, and NQO-1) expression, and substantially decreased (p < .05) Keap1 expression. The protein level was consistent with the messenger RNA (mRNA) level in in vitro and in vivo models. The docking data indicated that COS and Keap1 protein binding included six hydrogen bond formation processes (Gly364, Arg415, Arg483, His436, Ser431, and Arg380). The COS intervention mechanism may be related to the Nrf2/Keap1/ARE antioxidant pathway. Therefore, it provides a scientific basis for COS application in developing special medical food for DN patients.
Collapse
Affiliation(s)
- Yuwen Liu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Ran Zhang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Jiaqi Zou
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Hao Yin
- Organ Transplant CenterShanghai Changzheng HospitalShanghaiChina
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
- Organ Transplant CenterShanghai Changzheng HospitalShanghaiChina
| |
Collapse
|
8
|
Abou-Elghait AT, Al Adly RM, Radwan E, Meligy FY. Metformin modulates autophagic pathway in renal fibrosis induced by carbon tetrachloride in adult male albino rats. Ultrastruct Pathol 2024; 48:153-171. [PMID: 38654519 DOI: 10.1080/01913123.2024.2342444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUNDS Chronic kidney disease (CKD) is a global public health problem. All progressive chronic kidney disease (CKD) is characterized by tubulointerstitial fibrosis. Exposure to high concentrations of carbon tetrachloride (including vapor) can destroy the kidneys. Autophagy played an important role in maintaining the homeostasis of organs. Impaired autophagy was frequently associated with renal damage and fibrosis. Recent data suggests that metformin protects against a variety of kidney disorders. AIM To investigate the protective role of metformin on carbon tetrachloride induced renal damage via autophagy pathway. MATERIALS AND METHODS Forty adult male albino rats were divided into four equal groups (10 rats, each); Group 1: control group. Group 2: olive oil group received olive oil 1.5 mg/kg twice weekly S.C for 12 weeks. Group 3: The ccl4 group, the rats were received ccl4 1.5 mg/kg twice weekly S.C for 12 weeks. Group 4: CCL4 and Metformin group received concomitant treatment of CCL4, 1.5 mg/kg twice weekly S.C and 100 mg/kg/day Metformin orally for 12 weeks. After sacrifice, kidneys were taken from all animal groups and processed for light and electron microscopy, immunological studies and biochemical tests. Statistical analysis was done. RESULTS Administration of ccl4 resulted in histopathological changes in the kidney tissue in the form of areas of tissue destruction, inflammatory cell infiltration, congestion and fibrosis. Ultrastructurally, irregular thickening of GBM was observed. Improvement was noticed with concomitant treatment of ccl4 with metformin. CONCLUSION Metformin administration can modulate histological and biochemical effects in the renal tissue induced by of ccl4.
Collapse
Affiliation(s)
- Amal T Abou-Elghait
- Histology and Cell Biology Department, Sphinx university, Assiut, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Assuit University, Assiut, Egypt
| | - Rania M Al Adly
- Histology and Cell Biology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Eman Radwan
- Department of Biochemistry, Sphinx University, Assiut, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Histology and Cell Biology Department, Faculty of Medicine, Assuit University, Assiut, Egypt
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
| |
Collapse
|
9
|
Sun ML, Xu XW, Liu C, Tong YX, Wei YL, Liu HJ, Zhang W, Wang XH. Bioequivalence and Safety Assessment of 2 Formulations of Low-Dose Metformin Hydrochloride under Fasting Conditions in Healthy Chinese Participants: A Randomized Phase 1 Clinical Trial. Clin Pharmacol Drug Dev 2024; 13:307-314. [PMID: 38189592 DOI: 10.1002/cpdd.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
The incidence of type 2 diabetes is high, and the existing metformin hydrochloride (MH) tablets of 250 mg cannot meet the demands of the Chinese drug market. This study aimed to evaluate the bioequivalence and safety of generic formulations of MH tablets (test formulation [T], 250 mg/tablet) and innovative products (reference formulation [R], 250 mg/tablet) under fasting conditions. This was an open-label, single-dose, 2-period, 2-sequence crossover, single-center, randomized phase I clinical trial. T and R were considered bioequivalent if the adjusted geometric mean ratios (GMRs) and 90% confidence intervals of the area under the curve (AUC) and maximum concentration (Cmax ) were within the range of 0.8-1.25. Thirty-five participants completed the trial. The T/R adjusted GMRs (95.7% for Cmax , 98.7% for AUC0→t , 98.8% for AUC0→∞ ) were within the acceptable bioequivalence range of 80%-125%. No serious adverse events or suspected or unexpected serious adverse reactions occurred during this trial. The study findings confirmed that generic MH is a well-tolerated and bioequivalent alternative to innovative products under fasting conditions in healthy Chinese participants. (www.chinadrugtrials.org.cn; registration no. CTR20190356).
Collapse
Affiliation(s)
- Ming-Li Sun
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xin-Wen Xu
- Beijing Golden Tang Medicine Science & Technology Development Co. Ltd., Beijing, China
| | - Chen Liu
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuan-Xu Tong
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ya-Li Wei
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hui-Juan Liu
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wei Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xing-He Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shelke V, Dagar N, Gaikwad AB. Phloretin as an add-on therapy to losartan attenuates diabetes-induced AKI in rats: A potential therapeutic approach targeting TLR4-induced inflammation. Life Sci 2023; 332:122095. [PMID: 37722590 DOI: 10.1016/j.lfs.2023.122095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
AIM Targeting Toll-like receptor 4 (TLR4) and Angiotensin II type 1 receptor (AT1R) could provide renoprotection during acute kidney injury (AKI) mainly by regulating inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Phloretin (TLR4 inhibitor) as an add-on therapy to losartan (AT1R inhibitor) could provide more therapeutic benefits against AKI under diabetic condition. We aimed to study the effect of phloretin as an add-on therapy to losartan against AKI under diabetic condition. MAIN METHODS To mimic diabetic AKI condition, bilateral ischemia-reperfusion injury (BIRI) was done in diabetic male Wistar rats, and sodium azide treatment was given to high glucose NRK52E cells to mimic hypoxia-reperfusion injury. In diabetic rats, phloretin (50 mg/kg/per os (p.o.)) and losartan (10 mg/kg/p.o.) treatment was given for 4 days and 1 h prior to surgery while in NRK52E cells, both drugs (phloretin 50 μM and losartan 10 μM) were given 24 h prior to the hypoxia condition. The in vivo and in vitro samples were further used for different experiments. KEY FINDINGS Treatment with phloretin and losartan decreased diabetic and AKI biomarkers such as plasma creatinine, blood urea nitrogen (BUN), and kidney injury molecular 1 (KIM1). Moreover, a combination of phloretin and losartan significantly preserved ΔΨm and kidney morphology potentially by inhibiting TLR4-associated inflammation and AT1R-associated mitochondrial dysfunction, thereby oxidative stress. SIGNIFICANCE Combination therapy of phloretin and losartan was more effective than monotherapies. Both drugs target TLR4/MyD88/NF-κB pathway and reduce inflammation and mitochondrial dysfunction in AKI under diabetic condition.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
11
|
Srivastava SP, Goodwin JE. Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in db/db mice. Am J Physiol Renal Physiol 2023; 325:F519-F526. [PMID: 37589053 PMCID: PMC10639025 DOI: 10.1152/ajprenal.00105.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through upregulation of Wnt signaling. The db/db mouse model is a model of spontaneous type 2 diabetes that has been noted to develop fibrosis in multiple organs over time, including the kidneys. This study aimed to determine the effect of loss of endothelial GR on organ fibrosis in the db/db model. db/db mice lacking endothelial GR showed more severe fibrosis in multiple organs compared with endothelial GR-replete db/db mice. Organ fibrosis could be substantially improved either through administration of a Wnt inhibitor or metformin. IL-6 is a key cytokine driving the fibrosis phenotype and is mechanistically linked to Wnt signaling. The db/db model is an important tool to study the mechanisms of fibrosis and its phenotype in the absence of endothelial GR highlights the synergistic effects of Wnt signaling and inflammation in the pathogenesis or organ fibrosis.NEW & NOTEWORTHY The major finding of this work is that endothelial glucocorticoid receptor-mediated upregulation of Wnt signaling and concurrent hyperinflammation work synergistically to exacerbate organ fibrosis in a genetic mouse model of diabetes. This study adds to our understanding of diabetic renal fibrosis and has important implications for the use of metformin in this condition.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
12
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Srivastava SP, Goodwin JE. Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in db/db mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533532. [PMID: 36993478 PMCID: PMC10055184 DOI: 10.1101/2023.03.20.533532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through up regulation of Wnt signaling. The db/db mouse model is a model of spontaneous type 2 diabetes that has been noted to develop fibrosis in multiple organs over time, including the kidneys. This study aimed to determine the effect of loss of endothelial GR on organ fibrosis in the db/db model. Db/Db mice lacking endothelial GR showed more severe fibrosis in multiple organs compared to endothelial GR-replete db/db mice. Organ fibrosis could be substantially improved either through administration of a Wnt inhibitor or metformin. IL-6 is a key cytokine driving the fibrosis phenotype and is mechanistically linked to Wnt signaling. The db/db model is an important tool to study mechanisms of fibrosis and its phenotype in the absence of endothelial GR highlights the synergistic effects of Wnt signaling and inflammation in the pathogenesis or organ fibrosis.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics Yale University School of Medicine New Haven, CT, USA 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT, USA 06520
| | - Julie E Goodwin
- Department of Pediatrics Yale University School of Medicine New Haven, CT, USA 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT, USA 06520
- Department of Molecular and Cellular Physiology, Yale University School of Medicine New Haven, CT, USA 06520
| |
Collapse
|
14
|
Alshahrani MY, Ebrahim HA, Alqahtani SM, Bayoumy NM, Kamar SS, ShamsEldeen AM, Haidara MA, Al-Ani B, Albawardi A. Metformin Suppresses Thioacetamide-Induced Chronic Kidney Disease in Association with the Upregulation of AMPK and Downregulation of Oxidative Stress and Inflammation as Well as Dyslipidemia and Hypertension. Molecules 2023; 28:2756. [PMID: 36985728 PMCID: PMC10056045 DOI: 10.3390/molecules28062756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Toxic chemicals such as carbon tetrachloride and thioacetamide (TAA) are reported to induce hepato-nephrotoxicity. The potential protective outcome of the antidiabetic and pleiotropic drug metformin against TAA-induced chronic kidney disease in association with the modulation of AMP-activated protein kinase (AMPK), oxidative stress, inflammation, dyslipidemia, and systemic hypertension has not been investigated before. Therefore, 200 mg/kg TAA was injected (via the intraperitoneal route) in a model group of rats twice a week starting at week 3 for 8 weeks. The control rats were injected with the vehicle for the same period. The metformin-treated group received 200 mg/kg metformin daily for 10 weeks, beginning week 1, and received TAA injections with dosage and timing similar to those of the model group. All rats were culled at week 10. It was observed that TAA induced substantial renal injury, as demonstrated by significant kidney tissue damage and fibrosis, as well as augmented blood and kidney tissue levels of urea, creatinine, inflammation, oxidative stress, dyslipidemia, tissue inhibitor of metalloproteinases-1 (TIMP-1), and hypertension. TAA nephrotoxicity substantially inhibited the renal expression of phosphorylated AMPK. All these markers were significantly protected by metformin administration. In addition, a link between kidney fibrosis and these parameters was observed. Thus, metformin provides profound protection against TAA-induced kidney damage and fibrosis associated with the augmentation of the tissue protective enzyme AMPK and inhibition of oxidative stress, inflammation, the profibrogenic gene TIMP-1, dyslipidemia, and hypertension for a period of 10 weeks in rats.
Collapse
Affiliation(s)
- Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Hasnaa A. Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Samaa S. Kamar
- Department of Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt
- Histology Department, Armed Forces College of Medicine, Cairo 11566, Egypt
| | - Asmaa M. ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
15
|
Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, A. Eid R, Alqahtani SM, Abd Ellatif M, Al-Ani B, Albawardi A. Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression. Biomedicines 2023; 11:biomedicines11020361. [PMID: 36830898 PMCID: PMC9953164 DOI: 10.3390/biomedicines11020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
16
|
Metformin Reverses the Effects of Angiotensin 2 in Human Mammary Arteries by Modulating the Expression of Nitric Oxide Synthases. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Angiotensin 2 impairs vascular function by activation of reactive oxygen species (ROS) production and development of endothelial dysfunction. Metformin, the first-line therapeutic agent for type 2 diabetes mellitus, has vascular protective properties, beyond its glucose lowering effects. The aim of the present study was to in-vestigate the interaction between metformin and angiotensin 2 in human internal mammary arteries harvested from patients with coronary heart disease undergoing revascularization procedure, by evaluation of vascular function, reactive oxygen species (ROS) production and the gene expression of nitric oxide (NO) synthases (endothelial – eNOS, neuronal – nNOS and inducible – iNOS). To this aim, vascular samples were incubated with angiotensin 2 (Ang2, 12 h) with/without metformin (Metf, 10 μM) and used for ROS measurement (FOX assay), vascular reactivity in organ bath (contractility to phenylephrine, relaxation to acetylcholine, con-tractility to NG-nitro-L-arginine methyl ester/L-NAME) and RT-PCT studies. Acute incubation of the vascular rings with Ang2 im-paired vascular reactivity (increase contractility, decrease relax-ation), increased ROS production, supressed eNOS/nNOS and in-creased iNOS mRNA expression. Ex vivo incubation with metfor-min at a clinically relevant concentration reversed all these ef-fects. These data suggest that Metformin might be useful in allevi-ating endothelial dysfunction by improving the endothelial-de-pendent relaxation and mitigating oxidative stress in clinical set-ting associated with cardiovascular disease regardless the pres-ence of impaired glucose metabolism.
Collapse
|