1
|
Zhang X, Su G, Shao Z, Chan HW, Li S, Chow S, Tsang CK, Chow SF. Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke. Drug Deliv Transl Res 2025; 15:2022-2047. [PMID: 39485637 DOI: 10.1007/s13346-024-01721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug. Here, we report the rational development of FIN nano-embedded nasal powders using full factorial design experiments, aiming to provide rapid neuroprotection after ischemic stroke. Flash nanoprecipitation was employed to produce FIN nanosuspensions with the aid of polyvinylpyrrolidone and cholesterol as stabilizers. The optimized nanosuspension (particle size = 134.0 ± 0.6 nm, PDI = 0.179 ± 0.021, physical stability = 72 ± 0 h, and encapsulation efficiency of FIN = 90.67 ± 0.08%) was subsequently spray-dried into a dry powder, which exhibited excellent redispersibility (RdI = 1.09 ± 0.04) and satisfactory drug deposition in the olfactory region using a customized 3D-printed nasal cast (45.4%) and an Alberta Idealized Nasal Inlet model (8.6%) at 15 L/min. The safety of the optimized FIN nano-embedded dry powder was confirmed in cytotoxicity studies with nasal (RPMI 2650 and Calu-3 cells) and brain related cells (SH-SY5Y and PC 12 cells), while the neuroprotective effects were demonstrated by observed behavioral improvements and reduced cerebral infarct size in a middle cerebral artery occlusion mouse stroke model. The neuroprotective effect was further evidenced by increased expression of anti-apoptotic protein BCL-2 and decreased expression of pro-apoptotic proteins CC3 and BAX in brain peri-infarct tissues. Our findings highlight the potential of nasal delivery of FIN nano-embedded dry powder as a rapid neuroprotective treatment strategy for acute ischemic stroke.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Si Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| |
Collapse
|
2
|
Ryan R, Leslie MN, He P, Young PM, Hoyos CM, Ong HX, Traini D. Intranasal and inhaled delivery systems for targeting circadian dysfunction in neurodegenerative disorders, perspective and future outlook. Adv Drug Deliv Rev 2025; 220:115575. [PMID: 40185279 DOI: 10.1016/j.addr.2025.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/09/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Synchronisation of the suprachiasmatic nucleus (SCN) driven endogenous clock, located within the central nervous system (CNS), and exogenous time cues, is essential for maintaining circadian rhythmicity, homeostasis and overall wellbeing. Disordered circadian rhythms have been associated with various conditions, inclusive of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Traditional pharmacological approaches to circadian dysfunction in neurodegenerative disorders have primarily focused on oral drug delivery. Oral medications often face challenges in achieving the necessary systemic circulation to effectively bypass the blood brain barrier (BBB) and reach the CNS, primarily due to low or variable bioavailability. Advancements in non-invasive delivery methods, such as orally inhaled and intranasal formulations, present promising alternatives for targeting the CNS. Orally inhaled and intranasal drug delivery allows for medications to rapidly achieve high systemic circulation through increased bioavailability and fast onset of action. Additionally, intranasal delivery allows for therapies to bypass the BBB through the olfactory or trigeminal nerve pathways to directly enter the CNS. This review assesses the potential for orally inhaled and intranasal therapies to treat circadian disorders in neurodegenerative conditions. In addition, this review will explore melatonin as an example of enhancing therapeutic outcomes by adopting inhaled or intranasal drug delivery formulations to improve drug absorption and target circadian disorder more effectively.
Collapse
Affiliation(s)
- Rhearne Ryan
- Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
| | - Mathew N Leslie
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
| | - Patrick He
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW 2109, Australia
| | - Camilla M Hoyos
- Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Wong CYJ, Leite E, Ong HX, Traini D. Intranasal Delivery of Temozolomide and Desloratadine for Brain Tumour Therapy: A Cellular Study on Nasal Epithelial Toxicity, Transport, and Permeability. J Pharm Sci 2025:103795. [PMID: 40239838 DOI: 10.1016/j.xphs.2025.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The treatment of brain tumours, particularly glioblastoma (GBM), remains a significant challenge due to limited therapeutic options and the restrictive nature of the blood-brain barrier (BBB), which contributes to inadequate effective drug delivery. Temozolomide (TMZ), the first-line chemotherapeutic agent for GBM, offers only a modest survival benefit of 14.6 months and is associated with significant systemic side effects. Intranasal drug delivery has emerged as a promising non-invasive alternative, offering direct nose-to-brain (N2B) pathways to bypass the BBB. This method enables rapid and targeted drug transport while minimising systemic toxicity. METHODS This study investigates the potential of desloratadine (DL), a repurposed non-sedating second-generation antihistamine, to enhance the therapeutic profile of TMZ in a nasal epithelial barrier model, representing the initial point of contact for N2B drug delivery. Cellular studies were conducted to evaluate the cytotoxicity, half-maximal inhibitory concentration, combination index, epithelial integrity, and drug transport properties of TMZ and DL alone and in combination. Transepithelial electrical resistance (TEER) and permeability coefficient (Papp) assays assessed barrier integrity and drug transport across the nasal epithelial cells, while cytotoxicity studies confirmed selective targeting of nasal cells during intranasal administration without affecting bronchial cell viability. RESULTS DL demonstrated significant intracellular retention in nasal epithelial cells, while TMZ exhibited efficient transport across the nasal barrier with moderate cellular retention. The combination of TMZ and DL reduced cytotoxicity in nasal epithelial cells compared to TMZ alone, suggesting DL's protective role in mitigating TMZ-induced cytotoxic effects. TEER and Papp analyses confirmed that both agents preserved nasal epithelial integrity, supporting their compatibility with N2B delivery. The synergistic effects of the combination therapy indicate an enhanced therapeutic profile for TMZ, with reduced off-target toxicity. CONCLUSION This study highlights the potential of a TMZ-DL drug combination therapy as a novel delivery strategy for brain tumour treatment. DL not only mitigates TMZ-induced cytotoxicity but also preserves the structural and functional integrity of the nasal epithelial barrier, addressing a critical translational gap in non-invasive drug delivery for brain tumours. Future work should focus on optimising dosing regimens and validating these findings in advanced 3D nasal models to facilitate clinical translation of this innovative therapeutic approach.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2109, Australia.
| | - Elaine Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Hui Xin Ong
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2109, Australia
| | - Daniela Traini
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2109, Australia.
| |
Collapse
|
4
|
de Oliveira Junior ER, Silva JM, Salomão MA, de Almeida Oliveira NC, de Freitas CS, Ferreira NN, Moreno NS, Rodero CF, Graziani D, Zucolotto V, Mendanha SA, Lima EM. Optimized mucus adhesion and penetration of lipid-polymer nanoparticles enables effective nose-to-brain delivery of perillyl alcohol for glioblastoma therapy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01837-5. [PMID: 40133569 DOI: 10.1007/s13346-025-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
The delivery of drugs directly from the nose to the brain has been explored for the treatment of neurological diseases, such as glioblastoma, by overcoming the blood-brain barrier. Nanocarriers have demonstrated outstanding ability to enhance drug bioavailability in the brain, following intranasal administration. However, the performance of these nanosystems may be hindered by inadequate interactions with the nasal mucosa, limiting their effectiveness in reaching the olfactory region, and consequently, the translocation of particles to the brain. Here, we designed hybrid lipid-polymer nanoparticles (LPNP), containing the cationic lipid DOTAP and the triblock copolymer Pluronic® F127 to combine the mucoadhesiveness and mucus-penetrating properties. Perillyl alcohol (POH), a molecule currently under clinical trials against glioblastoma, via intranasal route, was entrapped in the nanoparticles. LPNP-POH exhibited a balanced profile of mucus adhesion and penetration, suggesting that the formulation may enhance mucosal retention while maintaining effective mucus diffusivity. In vivo evaluations displayed higher translocation of LPNP-POH from the nasal cavity to the brain. LPNP-POH resulted in a 2.5-fold increase in the concentration of perillyl acid (a primary metabolite of POH) in the cerebral tissue compared to the free drug. In vitro assays demonstrated that LPNP-POH increased the cytotoxicity and reduced the tumor growth of U87MG glioma cells. These results highlighted that the engineered formulation, with optimized mucoadhesiveness and mucus penetration properties, improved nose-to-brain delivery of POH, offering a promising potential for glioblastoma therapy.
Collapse
Affiliation(s)
- Edilson Ribeiro de Oliveira Junior
- Farmatec - Laboratory for RD&I in Pharmaceutical Nanotechnology and Drug Delivery Systems, Samambaia Technology Park, UFG, Goiás, Goiânia, 74690-631, Brazil
| | | | - Mariana Arraes Salomão
- Farmatec - Laboratory for RD&I in Pharmaceutical Nanotechnology and Drug Delivery Systems, Samambaia Technology Park, UFG, Goiás, Goiânia, 74690-631, Brazil
- School of Pharmacy, Federal University of Goiás, Goiânia, 74690-631, Brazil
| | - Nathalia Correa de Almeida Oliveira
- Farmatec - Laboratory for RD&I in Pharmaceutical Nanotechnology and Drug Delivery Systems, Samambaia Technology Park, UFG, Goiás, Goiânia, 74690-631, Brazil
- School of Pharmacy, Federal University of Goiás, Goiânia, 74690-631, Brazil
| | - Carla Santos de Freitas
- Farmatec - Laboratory for RD&I in Pharmaceutical Nanotechnology and Drug Delivery Systems, Samambaia Technology Park, UFG, Goiás, Goiânia, 74690-631, Brazil
| | - Natália Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Natalia Sanchez Moreno
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Camila Fernanda Rodero
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Daniel Graziani
- Laboratory of Molecular, Cell and Tissue Analysis, School of Veterinary and Animal Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Sebastião Antônio Mendanha
- Farmatec - Laboratory for RD&I in Pharmaceutical Nanotechnology and Drug Delivery Systems, Samambaia Technology Park, UFG, Goiás, Goiânia, 74690-631, Brazil
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Eliana Martins Lima
- Farmatec - Laboratory for RD&I in Pharmaceutical Nanotechnology and Drug Delivery Systems, Samambaia Technology Park, UFG, Goiás, Goiânia, 74690-631, Brazil.
- School of Pharmacy, Federal University of Goiás, Goiânia, 74690-631, Brazil.
| |
Collapse
|
5
|
Achmad NA, Tuna RW, Kurniawan I, Khairiyah, Asaf MB, Rahman L, Manggau MA, Aliyah, Dominguez-Robles J, Aswad M, Permana AD. Development of Thermosensitive Mucoadhesive Gel Based Encapsulated Lipid Microspheres as Nose-to-Brain Rivastigmine Delivery System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:314-328. [PMID: 39714110 DOI: 10.1021/acs.langmuir.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (ALZ) is a neurodegenerative disease that damages neuronal cells and causes decline in cognitive abilities. Administration of cholinesterase inhibitor compounds is the primary choice in the treatment of ALZ, one of which is rivastigmine (RVT). Several routes of administration of RVT are available, such as oral and transdermal. However, in the oral route, RVT has low bioavailability, undergoes first-pass metabolism, and the presence of the blood-brain barrier (BBB) reduces the therapeutic concentration of RVT. The transdermal route is nonselective target in the brain. This study aims to combine thermosensitive mucoadhesive gel (TG) and lipid microspheres (LM) as a drug delivery system to improve the efficacy of RVT. Combining these will prevent systemic side effects of RVT and increase drug concentration in the brain. LM was formulated with varying concentrations of Compritol polymer. The results of LM evaluation showed the values of particle size, PDI, and %EE and %DL were 8.519 μm, 0.018 ± 0.004, 72.54%, and 76.43%, respectively. The TG formulation can provide a liquid form at room temperature (25 °C) and a gel at nasal temperature (35 °C). Hemolytic and HET-CAM tests confirmed TG RVT LM's safety for use. Ex vivo studies showed controlled and sustained release of TG RVT LM, and in vivo studies showed TG RVT LM a higher pharmacokinetic profile in the brain than oral formulations and injections. The Cmax was found to be 7.05 ± 0.55 μg/cm3, Tmax was 24 h, and AUC0-24, which is related to the effectiveness of brain targeting, was 225.73 μg/cm3. In conclusion, this study shows the successful development of TG RVT LM, as evidenced by improved drug delivery to the brain, which is characterized by higher concentrations of RVT in the brain compared with oral and injectable RVT, this delivery system shows potential as a future treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Nurafni Annisa Achmad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Rachmatya W Tuna
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Irfan Kurniawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Khairiyah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Muhammad Bisfain Asaf
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Marianti A Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Aliyah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Juan Dominguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| |
Collapse
|
6
|
Sharma G, Wadhwa K, Kumar S, Singh G, Pahwa R. Revolutionizing Parkinson's treatment: Harnessing the potential of intranasal nanoemulsions for targeted therapy. Drug Deliv Transl Res 2025:10.1007/s13346-024-01770-z. [PMID: 39777646 DOI: 10.1007/s13346-024-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Parkinson's disease (PD) is the most prominent and highly prevalent chronic neuro-degenerative disease generally recognized by classical motor symptoms which are linked with genetic mutation, Lewy bodies, and subsequently selective loss of nigrostriatal dopaminergic neurons. The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier protect the central nervous system against toxins and are the most significant barriers to effective brain drug delivery in managing Parkinsonism. In recent years, intranasal delivery has attracted remarkable attention for brain targeting as the drug can be administered to the brain directly from the nose employing the trigeminal and olfactory pathways. For brain targeting through nasal delivery, several advanced and promising formulation techniques have been investigated globally. Nanoemulsions are regarded as an innovative carrier approach for PD, where these provide targeted administration and enhanced bioavailability of neurotherapeutics. This manuscript provides deeper insight into the pathophysiology of PD, various drug delivery strategies to overcome BBB, and the potential role of nanoemulsions via the intranasal route. Various research findings on the intranasal administration of nanoemulsions and their pivotal applications in the treatment of PD have also been embarked. The potential role of phytoconstituents and surface-modified nanoemulsions for the effective treatment of PD has also been reflected along with current challenges and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58 Delhi-Roorkee Highway, Meerut, 250005, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
7
|
Chakraborty S, Karmakar V, Chatterjee K, Chatterjee A, Dwivedi M, Gorain B. Chitosan nanoparticle-mediated nose-to-brain delivery of naringenin: Attenuating memory decline in experimental animals via behavioural assessment and modulation of biochemical parameters. Int J Biol Macromol 2025; 286:138336. [PMID: 39638217 DOI: 10.1016/j.ijbiomac.2024.138336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Naringenin, a flavonoid with potent antioxidant properties, faces low bioavailability, limiting its clinical application in Alzheimer's disease. This study developed naringenin-loaded chitosan nanoparticles (NAR-CNPs) for nose-to-brain delivery using the ionic gelation method. The NAR-CNPs exhibited an average particle size of 112.35 ± 1.55 nm, zeta potential of 15.36 ± 2.05 mV, and entrapment efficiency of 69.49 ± 1.88 %, with a sustained release profile (65.80 % over 8 h). Ex vivo permeation studies showed a 1.91-fold higher steady-state flux for NAR-CNPs compared to naringenin suspension, indicating enhanced brain penetration. The NAR-CNPs were safe for goat nasal mucosa and improved cognitive function in scopolamine-induced demented mice, whereas significantly reducing acetylcholinesterase activity (p < 0.001) and increasing antioxidant enzyme activities in the brain of experimental mice. Concurrently, the level of malondialdehyde was decreased in the brain, indicating reduced lipid peroxidation. Histopathological analysis showed a significant increase in neuronal count in NAR-CNPs treated animals compared to control group. These findings suggest that intranasally administered NAR-CNPs hold promise for treating cognitive impairment, though further studies are needed for clinical translation.
Collapse
Affiliation(s)
- Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
8
|
Li N, Zhu A, Chen W, Li J, Pan L, Jiang Y, Wang X, Di L, Wang R. Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke. Int J Pharm 2024; 666:124830. [PMID: 39401581 DOI: 10.1016/j.ijpharm.2024.124830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Xingnaojing injection (XNJ), is the first-line Chinese medicine injection approved for treating ischemic stroke (IS). XNJ can attenuate the inflammatory responses and oxidative stress, thus reversing neuronal damage of IS. This study aims to prepare the biomimetic nanoparticles (Bo-GEVs/XNJM) of nasal administration for IS treatment. The grapefruit extracellular vesicles (GEVs) loaded with microemulsions sourced from Xingnaojing injection (XNJM) are modified with borneol (Bo) to bypass the blood-brain barrier (BBB). Bo-GEVs/XNJM has the property of brain-targeting, and in vivo and in vitro experiments have validated that it has positive effects in reducing apoptosis, inhibiting oxidative stress, anti-inflammation, protecting mitochondrial function, and protecting the BBB. In summary, Bo-GEVs/XNJM has good neuroprotective effects, and provides an interventional method for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Nengjin Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anran Zhu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjing Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ruoning Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Akpinar Adscheid S, Türeli AE, Günday-Türeli N, Schneider M. Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1400-1414. [PMID: 39559726 PMCID: PMC11572074 DOI: 10.3762/bjnano.15.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Central nervous system diseases negatively affect patients and society. Providing successful noninvasive treatments for these diseases is challenging because of the presence of the blood-brain barrier. While protecting the brain's homeostasis, the barrier limits the passage of almost all large-molecule drugs and most small-molecule drugs. A noninvasive method, nose-to-brain delivery (N2B delivery) has been proposed to overcome this challenge. By exploiting the direct anatomical interaction between the nose and the brain, the drugs can reach the target, the brain. Moreover, the drugs can be encapsulated into various drug delivery systems to enhance physicochemical characteristics and targeting success. Many preclinical data show that this strategy can effectively deliver biopharmaceuticals to the brain. Therefore, this review focuses on N2B delivery while giving examples of different drug delivery systems suitable for the applications. In addition, we emphasize the importance of the effective delivery of monoclonal antibodies and RNA and stress the recent literature tackling this challenge. While giving examples of nanotechnological approaches for the effective delivery of small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies' success and limitations.
Collapse
Affiliation(s)
- Selin Akpinar Adscheid
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, PharmaScienceHub, Saarland University, Campus C4 1, Saarbrücken D-66123, Germany
| | | | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, PharmaScienceHub, Saarland University, Campus C4 1, Saarbrücken D-66123, Germany
| |
Collapse
|
10
|
Mardikasari SA, Katona G, Csóka I. Serum Albumin in Nasal Drug Delivery Systems: Exploring the Role and Application. Pharmaceutics 2024; 16:1322. [PMID: 39458651 PMCID: PMC11510880 DOI: 10.3390/pharmaceutics16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The application of serum albumin in various types of formulations has emerged as a valuable option in biomedical research, especially in the field of nasal drug delivery systems. A serum albumin-based carrier system has been employed due to several benefits, such as enhancing drug solubility and stability, generating the desired controlled release profile, and developing favorable properties with respect to the challenges in nasal conditions, which, in this case, involves hindering rapid elimination due to nasal mucociliary clearance. Accordingly, considering the important role of serum albumin, in-depth knowledge related to its utilization in preparing nasal drug formulation is highly encouraged. This review aimed to explore the potential application of serum albumin in fabricating nasal drug formulations and its crucial role and functionality regarding the binding interaction with nasal mucin, which significantly determines the successful administration of nasal drug formulations.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| |
Collapse
|
11
|
Torres J, Silva R, Farias G, Sousa Lobo JM, Ferreira DC, Silva AC. Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route. Pharmaceutics 2024; 16:1297. [PMID: 39458626 PMCID: PMC11510892 DOI: 10.3390/pharmaceutics16101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine has a high prevalence worldwide and is one of the main disabling neurological diseases in individuals under the age of 50. In general, treatment includes the use of oral analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) for mild attacks, and, for moderate or severe attacks, triptans or 5-HT1B/1D receptor agonists. However, the administration of antimigraine drugs in conventional oral pharmaceutical dosage forms is a challenge, since many molecules have difficulty crossing the blood-brain barrier (BBB) to reach the brain, which leads to bioavailability problems. Efforts have been made to find alternative delivery systems and/or routes for antimigraine drugs. In vivo studies have shown that it is possible to administer drugs directly into the brain via the intranasal (IN) or the nose-to-brain route, thus avoiding the need for the molecules to cross the BBB. In this field, the use of lipid nanoparticles, in particular solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has shown promising results, since they have several advantages for drugs administered via the IN route, including increased absorption and reduced enzymatic degradation, improving bioavailability. Furthermore, SLN and NLC are capable of co-encapsulating drugs, promoting their simultaneous delivery to the site of therapeutic action, which can be a promising approach for the acute migraine treatment. This review highlights the potential of using SLN and NLC to improve the treatment of acute migraine via the nose-to-brain route. First sections describe the pathophysiology and the currently available pharmacological treatment for acute migraine, followed by an outline of the mechanisms underlying the nose-to-brain route. Afterwards, the main features of SLN and NLC and the most recent in vivo studies investigating the use of these nanoparticles for the treatment of acute migraine are presented.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - José Manuel Sousa Lobo
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Domingos Carvalho Ferreira
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
12
|
Dey A, Ghosh S, Rajendran RL, Bhuniya T, Das P, Bhattacharjee B, Das S, Mahajan AA, Samant A, Krishnan A, Ahn BC, Gangadaran P. Alzheimer's Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions. Int J Mol Sci 2024; 25:9690. [PMID: 39273645 PMCID: PMC11395116 DOI: 10.3390/ijms25179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Collapse
Affiliation(s)
- Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India;
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India;
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Bidyabati Bhattacharjee
- Department of Life Sciences, Jain (Deemed-to-be) University, Bangalore 560078, Karnataka, India;
| | - Sagnik Das
- Department of Microbiology, St Xavier’s College (Autonomous), Kolkata 700016, West Bengal, India;
| | - Atharva Anand Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai 410210, Maharashtra, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Orissa, India;
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
13
|
Jin Z, Guo G, Yu A, Qian H, Tong Z. Comparative Analysis of Micrometer-Sized Particle Deposition in the Olfactory Regions of Adult and Pediatric Nasal Cavities: A Computational Study. Pharmaceutics 2024; 16:722. [PMID: 38931844 PMCID: PMC11206772 DOI: 10.3390/pharmaceutics16060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Direct nose-to-brain drug delivery, a promising approach for treating neurological disorders, faces challenges due to anatomical variations between adults and children. This study aims to investigate the spatial particle deposition of micron-sized particles in the nasal cavity among adult and pediatric subjects. This study focuses on the olfactory region considering the effect of intrasubject parameters and particle properties. Two child and two adult nose models were developed based on computed tomography (CT) images, in which the olfactory region of the four nasal cavity models comprises 7% to 10% of the total nasal cavity area. Computational Fluid Dynamics (CFD) coupled with a discrete phase model (DPM) was implemented to simulate the particle transport and deposition. To study the deposition of micrometer-sized drugs in the human nasal cavity during a seated posture, particles with diameters ranging from 1 to 100 μm were considered under a flow rate of 15 LPM. The nasal cavity area of adults is approximately 1.2 to 2 times larger than that of children. The results show that the regional deposition fraction of the olfactory region in all subjects was meager for 1-100 µm particles, with the highest deposition fraction of 5.7%. The deposition fraction of the whole nasal cavity increased with the increasing particle size. Crucially, we identified a correlation between regional deposition distribution and nasal cavity geometry, offering valuable insights for optimizing intranasal drug delivery.
Collapse
Affiliation(s)
- Ziyu Jin
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
- Southeast University—Monash University Joint Research Institute, Suzhou 215123, China;
| | - Gang Guo
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
| | - Aibing Yu
- Southeast University—Monash University Joint Research Institute, Suzhou 215123, China;
- ARC Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
| |
Collapse
|
14
|
Sharma M, Choudhury S, Babu A, Gupta V, Sengupta D, Ali SA, Dhokne MD, Datusalia AK, Mandal D, Panda JJ. Futuristic Alzheimer's therapy: acoustic-stimulated piezoelectric nanospheres for amyloid reduction. Biomater Sci 2024; 12:1801-1821. [PMID: 38407241 DOI: 10.1039/d3bm01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The degeneration of neurons due to the accumulation of misfolded amyloid aggregates in the central nervous system (CNS) is a fundamental neuropathology of Alzheimer's disease (AD). It is believed that dislodging/clearing these amyloid aggregates from the neuronal tissues could lead to a potential cure for AD. In the present work, we explored biocompatible polydopamine-coated piezoelectric polyvinylidene fluoride (DPVDF) nanospheres as acoustic stimulus-triggered anti-fibrillating and anti-amyloid agents. The nanospheres were tested against two model amyloidogenic peptides, including the reductionist model-based amyloidogenic dipeptide, diphenylalanine, and the amyloid polypeptide, amyloid beta (Aβ42). Our results revealed that DPVDF nanospheres could effectively disassemble the model peptide-derived amyloid fibrils under suitable acoustic stimulation. In vitro studies also showed that the stimulus activated DPVDF nanospheres could efficiently alleviate the neurotoxicity of FF fibrils as exemplified in neuroblastoma, SHSY5Y, cells. Studies carried out in animal models further validated that the nanospheres could dislodge amyloid aggregates in vivo and also help the animals regain their cognitive behavior. Thus, these acoustic stimuli-activated nanospheres could serve as a novel class of disease-modifying nanomaterials for non-invasive electro-chemotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Samraggi Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Anand Babu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Varun Gupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Dipanjan Sengupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli-226002, UP, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli-226002, UP, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli-226002, UP, India
| | - Dipankar Mandal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| |
Collapse
|
15
|
Jamshidnejad-Tosaramandani T, Kashanian S, Karimi I, Schiöth HB. Synthesis of a Rivastigmine and Insulin Combinational Mucoadhesive Nanoparticle for Intranasal Delivery. Polymers (Basel) 2024; 16:510. [PMID: 38399888 PMCID: PMC10891873 DOI: 10.3390/polym16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient drug delivery remains a critical challenge for treating neurodegenerative diseases, such as Alzheimer's disease (AD). Using innovative nanomaterials, delivering current medications like acetylcholinesterase inhibitors to the brain through the intranasal route is a promising strategy for managing AD. Here, we developed a unique combinational drug delivery system based on N,N,N-trimethyl chitosan nanoparticles (NPs). These NPs encapsulate rivastigmine, the most potent acetylcholinesterase inhibitor, along with insulin, a complementary therapeutic agent. The spherical NPs exhibited a zeta potential of 17.6 mV, a size of 187.00 nm, and a polydispersity index (PDI) of 0.29. Our findings demonstrate significantly improved drug transport efficiency through sheep nasal mucosa using the NPs compared to drug solutions. The NPs exhibited transport efficiencies of 73.3% for rivastigmine and 96.9% for insulin, surpassing the efficiencies of the drug solutions, which showed transport efficiencies of 52% for rivastigmine and 21% for insulin ex vivo. These results highlight the potential of a new drug delivery system as a promising approach for enhancing nasal transport efficiency. These combinational mucoadhesive NPs offer a novel strategy for the simultaneous cerebral delivery of rivastigmine and insulin, which could prove helpful in developing effective treatments of AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
| | - Isaac Karimi
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| |
Collapse
|
16
|
Okmen Altas B, Kalaycioglu GD, Lifshiz-Simon S, Talmon Y, Aydogan N. Tadpole-Like Anisotropic Polymer/Lipid Janus Nanoparticles for Nose-to-Brain Drug Delivery: Importance of Geometry, Elasticity on Mucus-Penetration Ability. Mol Pharm 2024; 21:633-650. [PMID: 38164788 DOI: 10.1021/acs.molpharmaceut.3c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Asymmetric geometry (aspect ratio >1), moderate stiffness (i.e., semielasticity), large surface area, and low mucoadhesion of nanoparticles are the main features to reach the brain by penetrating across the nasal mucosa. Herein, a new application has been presented for the use of multifunctional Janus nanoparticles (JNPs) with controllable geometry and size as a nose-to-brain (N2B) delivery system by changing proportions of Precirol ATO 5 and polycaprolactone compartments and other operating conditions. To bring to light the N2B application of JNPs, the results are presented in comparison with polymer and solid lipid nanoparticles, which are frequently used in the literature regarding their biopharmaceutical aspects: mucoadhesion and permeability through the nasal mucosa. The morphology and geometry of JPs were observed via cryogenic-temperature transmission electron microscopy images, and their particle sizes were verified by dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Although all NPs showed penetration across the mucus barrier, the best increase in penetration was observed with asymmetric and semielastic JNPs, which have low interaction ability with the mucus layer. This study presents a new and promising field of application for a multifunctional system suitable for N2B delivery, potentially benefiting the treatment of brain tumors and other central nervous system diseases.
Collapse
Affiliation(s)
- Burcu Okmen Altas
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | | | - Sapir Lifshiz-Simon
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Nihal Aydogan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
17
|
Kapoor A, Hafeez A, Kushwaha P. Nanocarrier Mediated Intranasal Drug Delivery Systems for the Management of Parkinsonism: A Review. Curr Drug Deliv 2024; 21:709-725. [PMID: 37365787 DOI: 10.2174/1567201820666230523114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
The transport of drugs to the brain becomes a key concern when treating disorders of the central nervous system. Parkinsonism is one of the major concerns across the world populations, which causes difficulty in coordination and balance. However, the blood-brain barrier is a significant barrier to achieving optimal brain concentration through oral, transdermal, and intravenous routes of administration. The intranasal route with nanocarrier-based formulations has shown potential for managing Parkinsonism disorder (PD). Direct delivery to the brain through the intranasal route is possible via the olfactory and trigeminal pathways using drug-loaded nanotechnology-based drug delivery systems. The critical analysis of reported works demonstrates dose reduction, brain targeting, safety, effectiveness, and stability for drug-loaded nanocarriers. The important aspects of intranasal drug delivery, PD details, and nanocarrier-based intranasal formulations in PD management with a discussion of physicochemical characteristics, cell line studies, and animal studies are the major topics in this review. Patent reports and clinical investigations are summarized in the last sections.
Collapse
Affiliation(s)
- Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India Lucknow India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| |
Collapse
|
18
|
Subhash Hinge N, Kathuria H, Monohar Pandey M. Rivastigmine-DHA ion-pair complex improved loading in hybrid nanoparticles for better amyloid inhibition and nose-to-brain targeting in Alzheimer's. Eur J Pharm Biopharm 2023; 190:131-149. [PMID: 37330117 DOI: 10.1016/j.ejpb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Rivastigmine hydrogen tartrate (RIV-HT) is given orally for Alzheimer's disease. However, oral therapy shows low brain bioavailability, short half-life and gastrointestinal-mediated adverse effects. RIV-HT intranasal delivery can avoid these side effects, but its low brain bioavailability remains challenging. These issues could be solved with hybrid lipid nanoparticles with enough drug loading to enhance RIV-HT brain bioavailability while avoiding oral route side effects. The RIV-HT and docosahexaenoic acid (DHA) ion-pair complex (RIV:DHA) was prepared to improve drug loading into lipid-polymer hybrid (LPH) nanoparticles. Two types of LPH, i.e., cationic (RIV:DHA LPH(+ve)) and anionic LPH (RIV:DHA LPH(-ve)) were developed. The effect of LPH surface charge on in-vitro amyloid inhibition, in-vivo brain concentrations and nose-to-brain drug targeting efficiency were investigated. LPH nanoparticles showed concentration dependant amyloid inhibition. RIV:DHA LPH(+ve) demonstrated relatively enhanced Aβ1-42 peptide inhibition. The thermoresponsive gel embedded with LPH nanoparticles improved nasal drug retention. LPH nanoparticles gel significantly improved pharmacokinetic parameters compared to RIV-HT gel. RIV:DHA LPH(+ve) gel showed better brain concentrations than RIV:DHA LPH(-ve) gel. The histological examination of nasal mucosa treated with LPH nanoparticles gel showed that the delivery system was safe. In conclusion, the LPH nanoparticle gel was safe and efficient in improving the nose-to-brain targeting of RIV, which can potentially be utilized in managing Alzheimer's.
Collapse
Affiliation(s)
- Nikita Subhash Hinge
- Department of Pharmacy, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani- 333031, Rajasthan, India
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Republic of Singapore.
| | - Murali Monohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani- 333031, Rajasthan, India.
| |
Collapse
|
19
|
Kaur A, Singh N, Kaur H, Kakoty V, Sharma DS, Khursheed R, Babu MR, Harish V, Gupta G, Gulati M, Kumar P, Dureja H, Alharthi NS, Khan FR, Rehman ZU, Hakami MA, Patel M, Patel R, Zandi M, Vishwas S, Dua K, Singh SK. Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers. J Drug Deliv Sci Technol 2023; 87:104868. [DOI: 10.1016/j.jddst.2023.104868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J Control Release 2023; 360:212-224. [PMID: 37343725 DOI: 10.1016/j.jconrel.2023.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.
Collapse
Affiliation(s)
- Emile F van Vliet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten J Knol
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
21
|
Gagliardi M, Chiarugi S, De Cesari C, Di Gregorio G, Diodati A, Baroncelli L, Cecchini M, Tonazzini I. Crosslinked Chitosan Nanoparticles with Muco-Adhesive Potential for Intranasal Delivery Applications. Int J Mol Sci 2023; 24:6590. [PMID: 37047562 PMCID: PMC10094788 DOI: 10.3390/ijms24076590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Intranasal drug delivery is convenient and provides a high bioavailability but requires the use of mucoadhesive nanocarriers. Chitosan is a well-established polymer for mucoadhesive applications but can suffer from poor cytocompatibility and stability upon administration. In this work, we present a method to obtain stable and cytocompatible crosslinked chitosan nanoparticles. We used 2,6-pyridinedicarboxylic acid as a biocompatible crosslinker and compared the obtained particles with those prepared by ionotropic gelation using sodium tripolyphosphate. Nanoparticles were tested to evaluate the size and the surface charge, as well as their stability in storage conditions (4 °C), at the nasal cavity temperature (32 °C), and at the body temperature (37 °C). The crosslinked chitosan nanoparticles showed a size around 150 nm and a surface charge of 10.3 mV ± 0.9 mV, both compatible with the intranasal drug administration. Size and surface charge parameters did not significantly vary over time, indicating the good stability of these nanoparticles. We finally tested their cytocompatibility in vitro using SHSY5Y human neuroblastoma and RPMI 2650 human nasal epithelial cells, with positive results. In conclusion, the proposed synthetic system shows an interesting potential as a drug carrier for intranasal delivery.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Sara Chiarugi
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Chiara De Cesari
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giulia Di Gregorio
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Alessandra Diodati
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Department of Developmental Neuroscience, Scientific Institute Stella Maris Foundation, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy
| | - Marco Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ilaria Tonazzini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
22
|
Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030746. [PMID: 36986607 PMCID: PMC10051709 DOI: 10.3390/pharmaceutics15030746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Nanomedicine is currently focused on the design and development of nanocarriers that enhance drug delivery to the brain to address unmet clinical needs for treating neuropsychiatric disorders and neurological diseases. Polymer and lipid-based drug carriers are advantageous for delivery to the central nervous system (CNS) due to their safety profiles, drug-loading capacity, and controlled-release properties. Polymer and lipid-based nanoparticles (NPs) are reported to penetrate the blood–brain barrier (BBB) and have been extensively assessed in in vitro and animal models of glioblastoma, epilepsy, and neurodegenerative disease. Since approval by the Food and Drug Administration (FDA) of intranasal esketamine for treatment of major depressive disorder, intranasal administration has emerged as an attractive route to bypass the BBB for drug delivery to the CNS. NPs can be specifically designed for intranasal administration by tailoring their size and coating with mucoadhesive agents or other moieties that promote transport across the nasal mucosa. In this review, unique characteristics of polymeric and lipid-based nanocarriers desirable for drug delivery to the brain are explored in addition to their potential for drug repurposing for the treatment of CNS disorders. Progress in intranasal drug delivery using polymeric and lipid-based nanostructures for the development of treatments of various neurological diseases are also described.
Collapse
|
23
|
Teaima MH, El-Nadi MT, Hamed RR, El-Nabarawi MA, Abdelmonem R. Lyophilized Nasal Inserts of Atomoxetine HCl Solid Lipid Nanoparticles for Brain Targeting as a Treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): A Pharmacokinetics Study on Rats. Pharmaceuticals (Basel) 2023; 16:326. [PMID: 37259468 PMCID: PMC9958713 DOI: 10.3390/ph16020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 07/30/2023] Open
Abstract
The study aims to investigate the ability of lyophilized nasal inserts of nanosized atomoxetine HCl solid lipid nanoparticles (ATM-SLNs) to transport atomoxetine (ATM) directly to the brain and overcome the first-pass metabolism. In this case, 16 formulae of (ATM-SLNs) were prepared using hot melt emulsification, stirring and ultrasonication method technique. A full factorial design was established with 24 trials by optimization of four variables; lipid type (Compritol 888 ATO or stearic acid) (X1), lipid to drug ratio [(1:2) or (2:1)] (X2), span 60: Pluronic f127 ratio [(1:3) or (3:1)] (X3) and probe sonication time (five or ten minutes) (X4). The prepared SLNs were characterized for entrapment efficiency (EE%), in-vitro drug release after 30 min (Q30min), particle size (PS), zeta potential (ZP) and polydispersity index (PDI). Design Expert® software was used to select the optimum two formulae. The morphological examination for the optimum two formulae was carried out using a transmission electron microscope (TEM). Furthermore, eight lyophilized nasal inserts were prepared by using a 23 full factorial design by optimization of three variables: type of (ATM-SLNs) formula (X1), type of polymer (NOVEON AA1 or HPMC K100m) (X2) and concentration of polymer (X3). They were evaluated for nasal inserts' physicochemical properties. The two optimum inserts were selected by Design Expert® software. The two optimum insets with the highest desirability values were (S4 and S8). They were subjected to DSC thermal stability study and in-vivo study on rats. They were compared with atomoxetine oral solution, atomoxetine (3 mg/kg, intraperitoneal injection) and the pure atomoxetine solution loaded in lyophilized insert. (ATM-SLNs) showed EE% range of (41.14 mg ± 1.8% to 90.6 mg ± 2.8%), (Q30min%) of (27.11 ± 5.9% to 91.08 ± 0.15%), ZP of (-8.52 ± 0.75 to -28.4 ± 0.212% mV), PS of (320.9 ± 110.81% nm to 936.7 ± 229.6% nm) and PDI of (0.222 ± 0.132% to 0.658 ± 0.03%). Additionally, the two optimum (ATM-SLNs) formulae chosen, i.e., F7 and F9 showed spherical morphology. Nasal inserts had assay of drug content of (82.5 ± 2.5% to 103.94 ± 3.94%), Q15min% of (89.9 ± 6.4% to 100%) and Muco-adhesion strength of (3510.5 ± 140.21 to 9319.5 ± 39.425). DSC results of S4 and S8 showed compatibility of (ATM) with the other excipients. S8 and S4 also showed higher trans-nasal permeation to the brain with brain targeting efficiency of (211.3% and 177.42%, respectively) and drug transport percentages of (52.7% and 43.64%, respectively). To conclude, lyophilized nasal inserts of (ATM-SLNs) enhanced (ATM) trans-nasal drug targeting permeation and brain targeting efficiency.
Collapse
Affiliation(s)
- Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo P.O. Box 11562, Egypt
| | - Merhan Taha El-Nadi
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Giza P.O. Box 12511, Egypt
| | - Raghda Rabe Hamed
- Industrial Pharmacy Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo P.O. Box 12566, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo P.O. Box 11562, Egypt
| | - Rehab Abdelmonem
- Industrial Pharmacy Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo P.O. Box 12566, Egypt
| |
Collapse
|
24
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
26
|
Development of Thermoresponsive-Gel-Matrix-Embedded Amoxicillin Trihydrate-Loaded Bovine Serum Albumin Nanoparticles for Local Intranasal Therapy. Gels 2022; 8:gels8110750. [PMID: 36421572 PMCID: PMC9690333 DOI: 10.3390/gels8110750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A high dose of amoxicillin is recommended as the first-line therapy for acute bacterial rhinosinusitis (ABR). However, oral administration of amoxicillin is connected to many adverse reactions coupled with moderate bioavailability (~60%). Therefore, this study aimed to develop a topical nasal preparation of amoxicillin, employing a thermoresponsive nanogel system to increase nasal residence time and prolong drug release. Rheological investigations revealed that formulations containing 21−23% w/w Poloxamer 407 (P407) were in accordance with the requirement of nasal administration (gelling temperature ~35 °C). The average hydrodynamic diameter (<200 nm), pH (6.7−6.9), and hypertonic osmolality (611−663 mOsmol/L) of the in situ gelling nasal nanogel appeared as suitable characteristics for local rhinosinusitis treatment. Moreover, taking into account the mucoadhesive strength and drug release studies, the 21% w/w P407 could be considered as an optimized concentration for effective nasal delivery. Antibacterial activity studies showed that the ability of amoxicillin-loaded in situ gelling nasal nanogel to inhibit bacterial growth (five common ABR pathogens) preserved its effectiveness in comparison to 1 mg/mL amoxicillin aqueous solution as a positive control. Altogether, the developed amoxicillin-loaded in situ gelling thermoresponsive nasal nanogel can be a potential candidate for local antibiotic therapy in the nasal cavity.
Collapse
|
27
|
Nunes D, Loureiro JA, Pereira MC. Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer's Drugs. Pharmaceutics 2022; 14:2296. [PMID: 36365114 PMCID: PMC9694621 DOI: 10.3390/pharmaceutics14112296] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a high impact worldwide, accounting for more than 46 million cases. The continuous increase of AD demands the fast development of preventive and curative therapeutic strategies that are truly effective. The drugs approved for AD treatment are classified into acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists. The therapeutic effectiveness of those drugs is hindered by their restricted access to the brain due to the blood-brain barrier, low bioavailability, and poor pharmacokinetic properties. In addition, the drugs are reported to have undesirable side effects. Several drug delivery systems (DDSs) have been widely exploited to address these issues. DDSs serve as drug carriers, combining the ability to deliver drugs locally and in a targeted manner with the ability to release them in a controlled and sustained manner. As a result, the pharmacological therapeutic effectiveness is raised, while the unwanted side effects induced by the unspecific distribution decrease. This article reviews the recently developed DDSs to increase the efficacy of Food and Drug Administration-approved AD drugs.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|