1
|
Salikhova DI, Shedenkova MO, Sudina AK, Belousova EV, Krasilnikova IA, Nekrasova AA, Nefedova ZA, Frolov DA, Fatkhudinov TK, Makarov AV, Surin AM, Savostyanov KV, Goldshtein DV, Bakaeva ZV. Neuroprotective and anti-inflammatory properties of proteins secreted by glial progenitor cells derived from human iPSCs. Front Cell Neurosci 2024; 18:1449063. [PMID: 39165834 PMCID: PMC11333358 DOI: 10.3389/fncel.2024.1449063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Currently, stem cells technology is an effective tool in regenerative medicine. Cell therapy is based on the use of stem/progenitor cells to repair or replace damaged tissues or organs. This approach can be used to treat various diseases, such as cardiovascular, neurological diseases, and injuries of various origins. The mechanisms of cell therapy therapeutic action are based on the integration of the graft into the damaged tissue (replacement effect) and the ability of cells to secrete biologically active molecules such as cytokines, growth factors and other signaling molecules that promote regeneration (paracrine effect). However, cell transplantation has a number of limitations due to cell transportation complexity and immune rejection. A potentially more effective therapy is using only paracrine factors released by stem cells. Secreted factors can positively affect the damaged tissue: promote forming new blood vessels, stimulate cell proliferation, and reduce inflammation and apoptosis. In this work, we have studied the anti-inflammatory and neuroprotective effects of proteins with a molecular weight below 100 kDa secreted by glial progenitor cells obtained from human induced pluripotent stem cells. Proteins secreted by glial progenitor cells exerted anti-inflammatory effects in a primary glial culture model of LPS-induced inflammation by reducing nitric oxide (NO) production through inhibition of inducible NO synthase (iNOS). At the same time, added secreted proteins neutralized the effect of glutamate, increasing the number of viable neurons to control values. This effect is a result of decreased level of intracellular calcium, which, at elevated concentrations, triggers apoptotic death of neurons. In addition, secreted proteins reduce mitochondrial depolarization caused by glutamate excitotoxicity and help maintain higher NADH levels. This therapy can be successfully introduced into clinical practice after additional preclinical studies, increasing the effectiveness of rehabilitation of patients with neurological diseases.
Collapse
Affiliation(s)
- Diana I. Salikhova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Margarita O. Shedenkova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Anastasya K. Sudina
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina V. Belousova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina A. Krasilnikova
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Anastasya A. Nekrasova
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Zlata A. Nefedova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniil A. Frolov
- Institute of Information Technologies, MIREA-Russian Technological University, Moscow, Russia
| | - Timur Kh. Fatkhudinov
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
| | - Andrey V. Makarov
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
| | - Alexander M. Surin
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Kirill V. Savostyanov
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Dmitry V. Goldshtein
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Zanda V. Bakaeva
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Zhang J, Liu S, Wang Y, Li X, Zeng H, Li B, Wang J. Preparation of Chitosan Nanoparticles through a Readily Solvent-Exchange Process for Efficient and Enhanced Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10486-10491. [PMID: 38728233 DOI: 10.1021/acs.langmuir.3c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In view of the excellent prospects of gene therapy and the potential safety and immunogenicity issues challenged by viral vectors, it is of great significance to develop a nonviral vector with low toxicity and low cost. In this work, we report a chitosan nanoparticle (CSNP) to be used as a gene vector prepared through a facile solvent-exchange strategy. Chitosan is first dissolved in ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM Ac), and then, the solvent is exchanged with water/phosphate-buffered saline (PBS) to remove ionic liquid, forming a final CSNP dispersion after ultrasonication. The prepared CSNP shows a positive surface charge and can condense green fluorescent protein-encoding plasmid (pGFP) at weight ratios (CSNP/pGFP) of 5/1 or higher. Dynamic light scattering size and ζ-potential characterization and gel retardation results confirm the formation of CSNP/pGFP complexes. Compared with plain pGFP, efficient cellular internalization and significantly enhanced green fluorescent protein (GFP) expression are observed by using CSNP as a plasmid vector. Benefitting from the intrinsic biocompatibility, low cost, low immunogenicity, and abundant sources of chitosan, as well as the facile preparation and the efficient gene transfection capacity of CSNP, it is believed that this CSNP could be used as a nonviral gene vector with great clinical translational potentials.
Collapse
Affiliation(s)
- Jialuo Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shujing Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huazhang Zeng
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
3
|
Cai H, Liu D, Xue WW, Ma L, Xie HT, Ning K. Lipid-based nanoparticles for drug delivery in Parkinson's disease. Transl Neurosci 2024; 15:20220359. [PMID: 39654878 PMCID: PMC11627081 DOI: 10.1515/tnsci-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra and ventral tegmental area, resulting in symptoms such as tremors, muscle rigidity, bradykinesia, and potential cognitive and affective disturbances. The effective delivery of pharmacological agents to the central nervous system is hindered by various factors, including the restrictive properties of the blood‒brain barrier and blood‒spinal cord barrier, as well as the physicochemical characteristics of the drugs. Traditional drug delivery methods may not provide the therapeutic concentrations necessary for functional restoration in PD patients. However, lipid-based nanoparticles (NPs) offer new possibilities for enhancing the bioavailability of established treatment regimens and developing innovative therapies that can modify the course of the disease. This review provides a concise overview of recent advances in lipid-based NP strategies aimed at mitigating specific pathological mechanisms relevant to PD progression. This study also explores the potential applications of nanotechnological innovations in the development of advanced treatment modalities for individuals with PD.
Collapse
Affiliation(s)
- Han Cai
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Nerella SG, Michaelides M, Minamimoto T, Innis RB, Pike VW, Eldridge MAG. PET reporter systems for the brain. Trends Neurosci 2023; 46:941-952. [PMID: 37734962 PMCID: PMC10592100 DOI: 10.1016/j.tins.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Positron emission tomography (PET) can be used as a noninvasive method to longitudinally monitor and quantify the expression of proteins in the brain in vivo. It can be used to monitor changes in biomarkers of mental health disorders, and to assess therapeutic interventions such as stem cell and molecular genetic therapies. The utility of PET monitoring depends on the availability of a radiotracer with good central nervous system (CNS) penetration and high selectivity for the target protein. This review evaluates existing methods for the visualization of reporter proteins and/or protein function using PET imaging, focusing on engineered systems, and discusses possible approaches for future success in the development of high-sensitivity and high-specificity PET reporter systems for the brain.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Seo DC, Ju YH, Seo JJ, Oh SJ, Lee CJ, Lee SE, Nam MH. DDC-Promoter-Driven Chemogenetic Activation of SNpc Dopaminergic Neurons Alleviates Parkinsonian Motor Symptoms. Int J Mol Sci 2023; 24:ijms24032491. [PMID: 36768816 PMCID: PMC9916413 DOI: 10.3390/ijms24032491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with typical motor symptoms. Recent studies have suggested that excessive GABA from reactive astrocytes tonically inhibits dopaminergic neurons and reduces the expression of tyrosine hydroxylase (TH), the key dopamine-synthesizing enzyme, in the substantia nigra pars compacta (SNpc). However, the expression of DOPA decarboxylase (DDC), another dopamine-synthesizing enzyme, is relatively spared, raising a possibility that the live but non-functional TH-negative/DDC-positive neurons could be the therapeutic target for rescuing PD motor symptoms. However, due to the absence of a validated DDC-specific promoter, manipulating DDC-positive neuronal activity has not been tested as a therapeutic strategy for PD. Here, we developed an AAV vector expressing mCherry under rat DDC promoter (AAV-rDDC-mCherry) and validated the specificity in the rat SNpc. Modifying this vector, we expressed hM3Dq (Gq-DREADD) under DDC promoter in the SNpc and ex vivo electrophysiologically validated the functionality. In the A53T-mutated alpha-synuclein overexpression model of PD, the chemogenetic activation of DDC-positive neurons in the SNpc significantly alleviated the parkinsonian motor symptoms and rescued the nigrostriatal TH expression. Altogether, our DDC-promoter will allow dopaminergic neuron-specific gene delivery in rodents. Furthermore, we propose that the activation of dormant dopaminergic neurons could be a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Dong-Chan Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Jin-Ju Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| |
Collapse
|
6
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|