1
|
Ly TN, Lan LM, Tsai MY, Chen YW, Hung HY. Comprehensive Exploration of Bromophenol Derivatives: Promising Antibacterial Agents against SA and MRSA. ACS OMEGA 2024; 9:40897-40906. [PMID: 39371990 PMCID: PMC11447708 DOI: 10.1021/acsomega.4c06115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
The incidence of treatment failure due to multidrug-resistant pathogens elevated over the years; the rate is much higher than new antibiotic drug discovery. Therefore, bromophenol derivatives as potential antibacterial agents on Staphylococcus aureus and MRSA were explored in this research via integrating chemistry, microbiology, and pharmacology to address significant knowledge gaps pertaining to the antibacterial activity of bromophenols based on their functional groups. Surprisingly, a simple molecule, 3-bromo-2,6-dihydroxyacetophenone (2), exhibited good anti-S. aureus activity and even MRSA, a drug-resistant strain. In addition, compound 2 also inhibited a common resistant pathway of pathogens, biofilm formation of S. aureus and MRSA. Moreover, the therapeutic index of 2 is up to 598, which can be viewed as highly selective and having low toxicity to human HEK-293 cells. Although these compounds displayed less effectiveness for the Gram-negative bacterium, Pseudomonas aeruginosa, they still manifested some effects on the virulence properties of P. aeruginosa, such as biofilm formation, pyocyanin production, and swarming motility. In silico analyses of the structure-activity relationship as well as ADMET properties were discussed in the end. This study shed some light on the antibacterial activities of bromophenols.
Collapse
Affiliation(s)
- Ta Ngoc Ly
- The
University of Da Nang—University of Science and Technology, Danang 550000, Vietnam
| | - Le My Lan
- The
University of Da Nang—University of Science and Technology, Danang 550000, Vietnam
| | - Ming-Yu Tsai
- School
of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical
Sciences, College of Medicine, National
Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Wen Chen
- Departments
of Pharmacology, College of Medicine, National
Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Yi Hung
- School
of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical
Sciences, College of Medicine, National
Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Boakye A, Seidu MP, Adomako A, Laryea MK, Borquaye LS. Marine-Derived Furanones Targeting Quorum-Sensing Receptors in Pseudomonas aeruginosa: Molecular Insights and Potential Mechanisms of Inhibition. Bioinform Biol Insights 2024; 18:11779322241275843. [PMID: 39246683 PMCID: PMC11378241 DOI: 10.1177/11779322241275843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
The quorum-sensing (QS) machinery in disease-causing microorganisms is critical in developing antibiotic resistance. In Pseudomonas aeruginosa, QS is involved in biofilm formation, virulence factors production, and general tolerance to antimicrobials. Owing to the major role QS plays, interference in the process is probably a facile route to overcome antimicrobial resistance. Some furanone-derived compounds from marine sources have shown promising anti-QS activity. However, their protein targets and potential mechanisms of action have not been explored. To elucidate their potential protein targets in this study, marine metabolites with furanone backbones similar to their cognitive autoinducers (AIs) were screened against various QS receptors (LasR, RhlR, and PqsR) using molecular docking and molecular dynamics (MD) simulation techniques. The order by which the compounds bind to the receptors follows LasR > RhlR > PqsR. Compounds exhibited remarkable stability against LasR and RhlR, likely because the AIs of these receptors are structural analogs of furanones. Furanones with shorter alkyl side chains bound strongly against RhlR. The presence of halogens improved binding against various receptors. PqsR, with its hydrophobic-binding site and structurally different AIs, showed weaker binding. This study provides a molecular basis for the design of potent antagonists against QS receptors using marine-derived furanones.
Collapse
Affiliation(s)
- Aaron Boakye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Alice Adomako
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Sadik A, Viswaswar JP, Rajamoney A, Rekha A, Raj DM, Prakashan D, Vasudevan M, Visakh JS, Renuka D, Hely S, Shaji SK, Chandran PR, Kumar G, Vijayan Nair S, Haripriyan J. Mitigation of quorum sensing mediated virulence factors of Pseudomonas aeruginosa: the role of Meldrum's acid activated furan. Front Microbiol 2024; 14:1272240. [PMID: 38235424 PMCID: PMC10791761 DOI: 10.3389/fmicb.2023.1272240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 01/19/2024] Open
Abstract
The rapid emergence of drug resistant pathogens is a major threat which has warranted the development of alternative strategies to combat infectious diseases. In this work, we have tested the anti-virulent activity of Meldrum's acid activated furan (MAF) and 1,3-dimethyl barbituric acid activated furan (BAF) against Chromobacterium violaceum and Pseudomonas aeruginosa. It was found that MAF significantly reduced the violacein production and biofilm formation of C. violaceum at sub-inhibitory concentrations. The quorum sensing (QS) regulated virulence factors of P. aeruginosa including biofilm formation, motility, pigment production, and elastase activity were also found to be reduced considerably at sub-inhibitory concentrations of MAF. Additionally, MAF downregulated the expression of genes in the QS circuitry of P. aeruginosa, demonstrating the potential of MAF in lowering the pathogenicity of P. aeruginosa. In silico studies demonstrated the potential of MAF to compete with the signaling molecules of C. violaceum and P. aeruginosa for the QS receptor interaction. In vivo studies using Caenorhabditis elegans demonstrated the anti-pathogenicity of MAF by enhancing the survival of P. aeruginosa-infected C. elegans. These results suggest that activated furan compounds could be potential inhibitors of QS-mediated virulence factors in C. violaceum and P. aeruginosa, encouraging their use in combating multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Ajmal Sadik
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Jithin P. Viswaswar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Ambili Rajamoney
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Anjali Rekha
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Darsana M. Raj
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Deepthi Prakashan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Mydhili Vasudevan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - J. S. Visakh
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Dhannya Renuka
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Sreetha Hely
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | | | - Prakash R. Chandran
- Department of Chemistry, Mannam Memorial N.S.S. College, Kottiyam, Kerala, India
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Sobha Vijayan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | | |
Collapse
|
4
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
5
|
Feng L, Xu M, Zeng W, Zhang X, Wang S, Yao Z, Zhou T, Shi S, Cao J, Chen L. Evaluation of the antibacterial, antibiofilm, and anti-virulence effects of acetic acid and the related mechanisms on colistin-resistant Pseudomonas aeruginosa. BMC Microbiol 2022; 22:306. [PMID: 36529724 PMCID: PMC9762083 DOI: 10.1186/s12866-022-02716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) has been majorly implicated in the infection of burns, wounds, skin, and respiratory tract. Colistin is considered the last line of defense against P. aeruginosa infections. However, colistin is becoming increasingly invalid in treating patients infected with colistin-resistant (COL-R) P. aeruginosa. As one of the disinfectants used for wound infections, acetic acid (AA) offers good antibacterial and antibiofilm activities against P. aeruginosa. This study investigated the effects of AA on COL-R P. aeruginosa in terms of its antibacterial, antibiofilm, and anti-virulence properties and the corresponding underlying mechanisms. RESULTS The antimicrobial susceptibility and growth curve data revealed that 0.078% (v/v) AA exhibited good antibacterial activity against COL-R P. aeruginosa. Subinhibitory concentrations of AA were ineffective in inhibiting biofilm formation, but 4 × and 8 × of the minimum inhibitory concentration (MIC) was effective in removing the preformed biofilms in biofilm-eradication assays. The virulence results illustrated that AA inhibited COL-R P. aeruginosa swimming, swarming, twitching, and pyocyanin and elastase production. The analysis of the potential antibacterial mechanisms of AA on COL-R P. aeruginosa revealed that AA acted by increasing the outer and inner membrane permeability, polarizing the membrane potential, and decreasing the reduction potential in a concentration-dependent manner. The qRT-PCR results revealed that AA may inhibit the virulence of COL-R P. aeruginosa by inhibiting the expression of T3SS-related and QS-related genes. CONCLUSIONS AA possesses antibacterial, antibiofilm, and anti-virulence properties that ultimately lead to the alteration of the bacterial membrane permeability, membrane potential, and reduction potential. Our findings indicated that AA is presently one of the effective treatment options for infections. A high concentration of AA (> 0.156% v/v) can be used to sterilize biofilm-prone surgical instruments, for hospital disinfection, and for treating the external wound, whereas a low concentration of AA (0.00975-0.039% v/v) may be used as an anti-virulence agent for adjuvant treatment of COL-R P. aeruginosa, thereby further improving the application value of AA in the treatment of infections.
Collapse
Affiliation(s)
- Luozhu Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Sipei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| |
Collapse
|