1
|
Orallo DE, Fuentes GM, Benavidez MG, Suárez PA, Nutter D, Fangio MF, Ramirez CL. Long-term stability and bactericidal properties of galenic formulations of Cannabis sativa oils. Fitoterapia 2024; 177:106128. [PMID: 39025316 DOI: 10.1016/j.fitote.2024.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The long-term stability in real and accelerated time for galenic oils based on full-spectrum cannabis has been studied, using sesame oil as a dilutant. Sesame oil is one of the most used vehicles in the cannabis pharmaceutical industry due to the costs and increased oral bioavailability of cannabinoids. The real-time assays conducted at 25 °C over twelve months demonstrated high stability and showed no significant changes in the composition of cannabinoids, total polyphenols, flavonoids, or antioxidant capacity. In these studies, it was observed that there was no development of microorganisms compromising the stability of the oils over a year. The three oil varieties exhibited a high bactericidal capacity against E. coli, S. aureus, and P. larvae.
Collapse
Affiliation(s)
- Dalila E Orallo
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Giselle M Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María G Benavidez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina
| | - Patricia A Suárez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN/UNMdP-CONICET, Juan B. Justo 2550, Mar del Plata, Argentina
| | - Diego Nutter
- ONG CBG2000, San Luis 1986, cp, 7600 Mar del Plata, Buenos Aires, Argentina
| | - María F Fangio
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina; Instituto de Investigaciones Físicas de Mar del Plata, IFIMAR (CONICET-UNMDP), Funes 3350, 7600 Mar del Plata, Argentina.
| | - Cristina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Luca SV, Wojtanowski K, Korona-Głowniak I, Skalicka-Woźniak K, Minceva M, Trifan A. Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids. Antibiotics (Basel) 2024; 13:485. [PMID: 38927152 PMCID: PMC11201062 DOI: 10.3390/antibiotics13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Hemp (Cannabis sativa L.) has been used for millennia as a rich source of food and fibers, whereas hemp flowers have only recently gained an increased market interest due to the presence of cannabinoids and volatile terpenes. Currently, the hemp flower processing industry predominantly focuses on either cannabinoid or terpene extraction. In an attempt to maximize the valorization of hemp flowers, the current study aimed to evaluate the phytochemical composition and antimicrobial properties of several extracts obtained from post-distillation by-products (e.g., spent material, residual distillation water) in comparison to the essential oil and total extract obtained from unprocessed hemp flowers. A terpene analysis of the essential oil revealed 14 monoterpenes and 35 sesquiterpenes. The cannabinoid profiling of extracts showed seven acidic precursors and 14 neutral derivatives, with cannabidiol (CBD) reaching the highest concentration (up to 16 wt.%) in the spent material extract. The antimicrobial assessment of hemp EO, cannabinoid-containing extracts, and single compounds (i.e., CBD, cannabigerol, cannabinol, and cannabichromene) against a panel of 20 microbial strains demonstrated significant inhibitory activities against Gram-positive bacteria, Helicobacter pylori, and Trichophyton species. In conclusion, this work suggests promising opportunities to use cannabinoid-rich materials from hemp flower processing in functional foods, cosmetics, and pharmaceuticals with antimicrobial properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Krzysztof Wojtanowski
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
3
|
Martinena CB, Corleto M, Martínez MMB, Amiano NO, García VE, Maffia PC, Tateosian NL. Antimicrobial Effect of Cannabidiol on Intracellular Mycobacterium tuberculosis. Cannabis Cannabinoid Res 2024; 9:464-469. [PMID: 38252548 DOI: 10.1089/can.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Introduction: Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB), has killed nearly one billion people during the last two centuries. Nowadays, TB remains a major global health problem ranked among the top 10 causes of death worldwide. One of the main challenges in developing new strategies to fight TB is focused on reducing the duration and complexity of drug regimens. Cannabidiol (CBD) is the main nonpsychoactive ingredient extracted from the Cannabis sativa L. plant, which has been shown to be biologically active against bacteria. The purpose of this work was to investigate the antimicrobial effect of CBD on M. tuberculosis intracellular infection. Materials and Methods: To assess the minimum inhibitory concentration (MIC) of CBD on mycobacterial strains, the MTT assay was performed on Mycobacterium smegmatis, and the Colony-Forming Unit (CFU) assay was conducted on MtbH37Rv. Additionally, the cytotoxic effect of CBD on THP-1 cells was assessed by MTT assay. Moreover, macrophages derived from the THP-1 cell were infected with MtbH37Rv (multiplicity of infection 1:10) to evaluate the intracellular activity of CBD by determining the CFU/mL. Results: Antimicrobial activity against M. smegmatis (MIC=100 μM) and MtbH37Rv (MIC=25 μM) cultures was exhibited by CBD. Furthermore, the effect of CBD was also evaluated on MtbH37Rv infected macrophage cells. Interestingly, a reduction in viable intracellular MtbH37Rv bacteria was observed after 24 h of treatment. Moreover, CBD exhibited a safe profile toward human THP-1 cells, since it showed no toxicity (CC50=1075 μM) at a concentration of antibacterial effect (selectivity index 43). Conclusion: These results extend the knowledge regarding the antimicrobial activity of CBD and demonstrate its ability to kill the human intracellular pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Camila Belen Martinena
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Merlina Corleto
- Laboratorio de Aplicaciones Biotecnológicas y Microbiologia, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Melina María Belén Martínez
- Laboratorio de Aplicaciones Biotecnológicas y Microbiologia, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Nicolás Oscar Amiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Paulo Cesar Maffia
- Laboratorio de Aplicaciones Biotecnológicas y Microbiologia, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
4
|
Zhang Z, Luo Z, Sun Y, Deng D, Su K, Li J, Yan Z, Wang X, Cao J, Zheng W, Ang S, Feng Y, Zhang K, Ma H, Wu P. Discovery of novel cannabidiol derivatives with augmented antibacterial agents against methicillin-resistant Staphylococcus aureus. Bioorg Chem 2023; 141:106911. [PMID: 37832223 DOI: 10.1016/j.bioorg.2023.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Drug-resistant bacterium infections are a severe threat to public health and novel antimicrobial agents combating drug-resistant bacteria are an unmet medical need. Although cannabidiol (CBD) has been reported to show antibacterial effects, whether its antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) can be improved remains unclear. Herein, a series of novel CBD derivatives were designed and synthesized using various chemical approaches including amidation, Friedel-Crafts alkylation, and Negishi cross-coupling reaction for the modifications at the C-7, C-2', C-4', and C-6' positions of CBD skeleton. Derivative 21f showed augmented antibacterial activity against MRSA with a minimum inhibitory concentration of 4 μM without cytotoxic effect in microglia BV2 cells. Further mechanistic studies suggested that 21f inhibited the formation of biofilms, induced excess reactive oxygen species, and reduced bacterial metabolism, which collectively led to the acceleration of bacterial death. Findings from this study expand the understanding of CBD derivatives as promising antibacterial agents, which provides useful information for the development of cannabinoid-based antibacterial agents.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Zhujun Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ying Sun
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Duanyu Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xu Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jifan Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, USA; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
5
|
Carmona Rendón Y, Garzón HS, Bueno-Silva B, Arce RM, Suárez LJ. Cannabinoids in Periodontology: Where Are We Now? Antibiotics (Basel) 2023; 12:1687. [PMID: 38136721 PMCID: PMC10740419 DOI: 10.3390/antibiotics12121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Cannabinoids are a well-documented treatment modality for various immune and inflammatory diseases, including asthma, chronic obstructive pulmonary disease, Crohn's disease, arthritis, multiple sclerosis, and a range of neurodegenerative conditions. However, limited information is available regarding the therapeutic potential of cannabinoids in treating periodontal disease. OBJECTIVE The objective of this study is to analyze the current evidence on the antibacterial and immunomodulatory effects of cannabis and its role in the healing and regeneration processes within periodontal tissues. RESULTS This review discusses the potential role of cannabinoids in restoring periodontal tissue homeostasis. CONCLUSIONS The examination of the endocannabinoid system and the physiological effects of cannabinoids in the periodontium suggests that they possess immunomodulatory and antibacterial properties, which could potentially promote proper tissue healing and regeneration.
Collapse
Affiliation(s)
- Yésica Carmona Rendón
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Hernán Santiago Garzón
- Programa de Doctorado en Ingeniería, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Bruno Bueno-Silva
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, Brazil;
| | - Roger M. Arce
- Department of Periodontics and Oral Hygiene, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA;
| | - Lina Janeth Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
6
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
7
|
Ratajczak K, Piotrowska-Cyplik A, Cyplik P. Analysis of the Effect of Various Potential Antimicrobial Agents on the Quality of the Unpasteurized Carrot Juice. Molecules 2023; 28:6297. [PMID: 37687126 PMCID: PMC10488548 DOI: 10.3390/molecules28176297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Short shelf-life and poor microbial quality of minimally processed foods of plant origin pose a serious problem for the food industry. Novel techniques of minimal treatment combined with disinfection are being researched, and, for fresh juice, the addition of antimicrobial agents appears to be a promising route. In this research, fresh, nonfiltered, unpasteurized carrot juice was mixed with four potential antimicrobials (bourbon vanilla extract, peppermint extract, cannabidiol oil, and grapefruit extract). All four variants and the reference pure carrot juice were analyzed for metapopulational changes, microbial changes, and physicochemical changes. The potential antimicrobials used in the research have improved the overall microbial quality of carrot juice across 4 days of storage. However, it is important to notice that each of the four agents had a different spectrum of effectiveness towards the groups identified in the microflora of carrot juice. Additionally, the antimicrobials have increased the diversity of the carrot juice microbiome but did not prevent the occurrence of pathogenic bacteria. In conclusion, the use of antimicrobial agents such as essential oils or their derivatives may be a promising way of improving the microbial quality and prolonging the shelf-life of minimally processed foods, such as fresh juices, but the technique requires further research.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Agnieszka Piotrowska-Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Paweł Cyplik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| |
Collapse
|
8
|
Gildea L, Ayariga JA, Xu J, Villafane R, Robertson BK, Samuel-Foo M, Ajayi OS. Cannabis sativa CBD Extract Exhibits Synergy with Broad-Spectrum Antibiotics against Salmonella enterica subsp. Enterica serovar typhimurium. Microorganisms 2022; 10:microorganisms10122360. [PMID: 36557613 PMCID: PMC9784314 DOI: 10.3390/microorganisms10122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
New generation antibiotics are needed to combat the development of resistance to antimicrobials. One of the most promising new classes of antibiotics is cannabidiol (CBD). It is a non-toxic and low-resistance chemical that can be used to treat bacterial infections. The antibacterial activity of Cannabis sativa L. byproducts, specifically CBD, has been of growing interest in the field of novel therapeutics. As research continues to define and characterize the antibacterial activity that CBD possesses against a wide variety of bacterial species, it is important to examine potential interactions between CBD and common therapeutics such as broad-spectrum antibiotics. In this study it is demonstrated that CBD-antibiotic (combination of CBD and antibiotic) co-therapy can effectively fight Salmonella typhimurium (S. typhimurium) via membrane integrity disruption. This research serves to examine the potential synergy between CBD and three broad-spectrum antibiotics (ampicillin, kanamycin, and polymyxin B) for potential CBD-antibiotic co-therapy. In this study, it is revealed that S. typhimurium growth is inhibited at very low dosages of CBD-antibiotic. This interesting finding demonstrates that CBD and CBD-antibiotic co-therapies are viable novel alternatives to combating S. typhimurium.
Collapse
Affiliation(s)
- Logan Gildea
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
- Correspondence: (J.A.A.); (O.S.A.)
| | - Junhuan Xu
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Robert Villafane
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Boakai K. Robertson
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
- Correspondence: (J.A.A.); (O.S.A.)
| |
Collapse
|