1
|
Halimi H, Ahmadi B, Asri N, Rostami-Nejad M, Houri H. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration. Microb Pathog 2025; 200:107363. [PMID: 39909290 DOI: 10.1016/j.micpath.2025.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Bacterial biofilms, which are complex communities of microorganisms encapsulated in a self-produced extracellular matrix, play critical roles in various diseases. Recent research has underscored the dualistic nature of amyloids, structural proteins within these biofilms, in human health, particularly highlighting the significant role in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's disease (PD). These amyloids modulate the immune response by inducing the production of interleukin-10 (IL-10), which plays a role in anti-inflammatory processes. Additionally, they inhibit the aggregation of human amyloids and enhance the integrity of the intestinal barrier. Detrimentally, they exacerbate neuroinflammation by elevating inflammatory cytokines and promoting the aggregation of human amyloid proteins-amyloid-β (Aβ) in AD and α-synuclein (αS) in PD-through a process known as cross-seeding. Moreover, bacterial amyloids have also been shown to stimulate the production of anti-curli/DNA antibodies, which are implicated in the pathogenesis of autoimmune diseases. Given their dualistic nature, bacterial amyloids may, under specific conditions, function as beneficial proteins for human health. This understanding holds promise for the development of targeted therapeutic strategies aimed at modulating bacterial amyloids in the context of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Hossein Halimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ahmadi
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wei X, Wang H, Liu S, Bao K, Ke S, Zhou Z. Surfactin's impact on gut microbiota and intestinal tumor cells. Int J Biol Macromol 2025; 287:138607. [PMID: 39662559 DOI: 10.1016/j.ijbiomac.2024.138607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Surfactin exhibits multifunctional properties, including antimicrobial, anti-inflammatory, and antitumor activities, positioning it as a promising novel food additive. However, its specific effects on the gut environment remain largely unexplored. To investigate this, we conducted in vitro fermentation simulations to assess the impact of surfactin on gut microbiota. Additionally, we evaluated surfactin's inhibitory effects on HCT-116 cells. The results of the fermentation simulation indicated that surfactin significantly increased butyrate production and enhanced the relative abundance of Megamonas, Alistipes, the Oscillospiraceae NK4A214 group, and Methanobrevibacter smithii, while markedly inhibiting Desulfobacterota, potentially facilitating amino acid and lipid metabolism. Furthermore, surfactin significantly inhibited the proliferation of HCT-116 cells and promoted their apoptosis, without exhibiting cytotoxicity towards normal human intestinal epithelial crypt (HIEC) cells. In summary, surfactin demonstrates a favorable safety profile in the intestinal environment. This study contributes to our understanding of the interaction between surfactin and the gut environment.
Collapse
Affiliation(s)
- Xinyue Wei
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huifang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shijia Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kexin Bao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; College of Food Science, Shihezi University, Shihezi 832003, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
3
|
Durmaz Celik N, Ozben S, Ozben T. Unveiling Parkinson's disease through biomarker research: current insights and future prospects. Crit Rev Clin Lab Sci 2024; 61:529-545. [PMID: 38529882 DOI: 10.1080/10408363.2024.2331471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by the gradual depletion of dopaminergic neurons in the substantia nigra. Despite substantial strides in comprehending potential causative mechanisms, the validation of biomarkers with unequivocal evidence for routine clinical application remains elusive. Consequently, the diagnosis heavily relies on patients' clinical assessments and medical backgrounds. The imperative need for diagnostic and prognostic biomarkers arises due to the prevailing limitations of treatments, which predominantly address symptoms without modifying the disease course. This comprehensive review aims to elucidate the existing landscape of diagnostic and prognostic biomarkers for PD, drawing insights from contemporary literature.
Collapse
Affiliation(s)
- Nazlı Durmaz Celik
- Department of Neurology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Serkan Ozben
- Department of Neurology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Jordi L, Isacson O. Neuronal threshold functions: Determining symptom onset in neurological disorders. Prog Neurobiol 2024; 242:102673. [PMID: 39389338 PMCID: PMC11809673 DOI: 10.1016/j.pneurobio.2024.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Synaptic networks determine brain function. Highly complex interconnected brain synaptic networks provide output even under fluctuating or pathological conditions. Relevant to the treatment of brain disorders, understanding the limitations of such functional networks becomes paramount. Here we use the example of Parkinson's Disease (PD) as a system disorder, with PD symptomatology emerging only when the functional reserves of neurons, and their interconnected networks, are unable to facilitate effective compensatory mechanisms. We have denoted this the "threshold theory" to account for how PD symptoms develop in sequence. In this perspective, threshold functions are delineated in a quantitative, synaptic, and cellular network context. This provides a framework to discuss the development of specific symptoms. PD includes dysfunction and degeneration in many organ systems and both peripheral and central nervous system involvement. The threshold theory accounts for and explains the reasons why parallel gradually emerging pathologies in brain and peripheral systems generate specific symptoms only when functional thresholds are crossed, like tipping points. New and mounting evidence demonstrate that PD and related neurodegenerative diseases are multisystem disorders, which transcends the traditional brain-centric paradigm. We believe that representation of threshold functions will be helpful to develop new medicines and interventions that are specific for both pre- and post-symptomatic periods of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luc Jordi
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA; Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhao Z, Chen J, Zhao D, Chen B, Wang Q, Li Y, Chen J, Bai C, Guo X, Hu N, Zhang B, Zhao R, Yuan J. Microbial biomarker discovery in Parkinson's disease through a network-based approach. NPJ Parkinsons Dis 2024; 10:203. [PMID: 39461950 PMCID: PMC11513973 DOI: 10.1038/s41531-024-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Associations between the gut microbiota and Parkinson's disease (PD) have been widely investigated. However, the replicable biomarkers for PD diagnosis across multiple populations remain elusive. Herein, we performed a meta-analysis to investigate the pivotal role of the gut microbiome in PD and its potential diagnostic implications. Six 16S rRNA gene amplicon sequence datasets from five independent studies were integrated, encompassing 550 PD and 456 healthy control samples. The analysis revealed significant alterations in microbial composition and alpha and beta diversity, emphasizing altered gut microbiota in PD. Specific microbial taxa, including Faecalibacterium, Roseburia, and Coprococcus_2, known as butyrate producers, were notably diminished in PD, potentially contributing to intestinal inflammation. Conversely, genera such as Akkermansia and Bilophila exhibited increased relative abundances. A network-based algorithm called NetMoss was utilized to identify potential biomarkers of PD. Afterwards, a classification model incorporating 11 optimized genera demonstrated high performance. Further functional analyses indicated enrichment in pathways related to neurodegeneration and metabolic pathways. These findings illuminate the intricate relationship between the gut microbiota and PD, offering insights into potential therapeutic interventions and personalized diagnostic strategies.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Pharmacy, Peking University Third Hospital, 100191, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Danhua Zhao
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Baoyu Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Qi Wang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Yuan Li
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Junyi Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Chaobo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Xintong Guo
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Nan Hu
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
- First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Bingwei Zhang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
- First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 100191, Beijing, China.
- Institute for Drug Evaluation, Peking University Health Science Center, 100191, Beijing, China.
| | - Junliang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China.
| |
Collapse
|
6
|
Andreozzi V, Cuoco S, Balestrieri M, Fierro F, Ferrara N, Erro R, Di Filippo M, Barbella G, Memoli MC, Silvestri A, Squillante M, Guglielmetti S, Barone P, Iovino P, Pellecchia MT. Synbiotic supplementation may globally improve non-motor symptoms in patients with stable Parkinson's disease: results from an open label single-arm study. Sci Rep 2024; 14:23095. [PMID: 39367119 PMCID: PMC11452401 DOI: 10.1038/s41598-024-74400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Gut microbiota changes and brain-gut-axis (BGA) dysregulation are common in people with Parkinson's Disease (PD). Probiotics and prebiotics are emerging as a potential therapeutic approach for PD patients. The aim of this paper was to assess the neurological and gastroenterological effects in PD patients with constipation after the administration of a synbiotic product, with a focus on behavioral and cognitive symptoms. We enrolled patients with stable PD who met diagnostic criteria for functional constipation and/or irritable bowel syndrome with constipation according to Rome IV Criteria. Patients received a synbiotic treatment (Enterolactis Duo, containing the probiotic strain Lacticaseibacillus paracasei DG and the prebiotic fiber inulin) for 12 weeks. A neurological and a gastroenterological evaluation were collected before and after the treatment. In addition, 16S rRNA gene profiling and short chain fatty acid quantification were performed to characterize the microbial ecosystem of fecal samples collected before (n = 22) and after (n = 9) the synbiotic administration. 30 patients were consecutively enrolled. After treatment, patients performed better in MDS-UPDRS part 1 (p = 0.000), SCOPA-AUT (p = 0.001), TAS-20 (p = 0.014), HAM-D (p = 0.026), DIFt (p = 0.003), PAS-A (p = 0.048). Gastroenterological evaluations showed improvements in PAC-SYM score (p < 0.001), number of complete bowel movement (p < 0.001) and BSFS (p < 0.001). After the synbiotic administration, we observed a significant increase in the abundance of the order Oscillospirales, as well as the Oscillospiraceae family and the species Faecalibacterium prausnitzii within this order in fecal samples. Synbiotic treatment demonstrates potential efficacy in ameliorating non-motor features in PD patients.
Collapse
Affiliation(s)
- V Andreozzi
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - S Cuoco
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M Balestrieri
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - F Fierro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - N Ferrara
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - R Erro
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M Di Filippo
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - G Barbella
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M C Memoli
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - A Silvestri
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M Squillante
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - S Guglielmetti
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, Italy
| | - P Barone
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - P Iovino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - M T Pellecchia
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy.
| |
Collapse
|
7
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
9
|
Aktas B, Aslim B, Ozdemir DA. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci Rep 2024; 14:15460. [PMID: 38965287 PMCID: PMC11224381 DOI: 10.1038/s41598-024-65061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, 15200, Turkey.
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06500, Turkey
| | - Deniz Ates Ozdemir
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, 06230, Turkey
| |
Collapse
|
10
|
Franciotti R, Pignatelli P, D’Antonio DL, Mancinelli R, Fulle S, De Rosa MA, Puca V, Piattelli A, Thomas AM, Onofrj M, Sensi SL, Curia MC. The Immune System Response to Porphyromonas gingivalis in Neurological Diseases. Microorganisms 2023; 11:2555. [PMID: 37894213 PMCID: PMC10609495 DOI: 10.3390/microorganisms11102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies have reported an association between oral microbial dysbiosis and the development and progression of pathologies in the central nervous system. Porphyromonas gingivalis (Pg), the keystone pathogen of the oral cavity, can induce a systemic antibody response measured in patients' sera using enzyme-linked immunosorbent assays. The present case-control study quantified the immune system's response to Pg abundance in the oral cavities of patients affected by different central nervous system pathologies. The study cohort included 87 participants: 23 healthy controls (HC), 17 patients with an acute neurological condition (N-AC), 19 patients with a chronic neurological condition (N-CH), and 28 patients with neurodegenerative disease (N-DEG). The results showed that the Pg abundance in the oral cavity was higher in the N-DEG patients than in the HC (p = 0.0001) and N-AC patients (p = 0.01). In addition, the Pg abundance was higher in the N-CH patients than the HCs (p = 0.005). Only the N-CH patients had more serum anti-Pg antibodies than the HC (p = 0.012). The inadequate response of the immune system of the N-DEG group in producing anti-Pg antibodies was also clearly indicated by an analysis of the ratio between the anti-Pg antibodies quantity and the Pg abundance. Indeed, this ratio was significantly lower between the N-DEG group than all other groups (p = 0.0001, p = 0.002, and p = 0.03 for HC, N-AC, and N-CH, respectively). The immune system's response to Pg abundance in the oral cavity showed a stepwise model: the response diminished progressively from the patients affected with an acute condition to the patients suffering from chronic nervous system disorders and finally to the patients affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
- Fondazione Villaserena per la Ricerca, 65013 Città Sant’Angelo, Pescara, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Puca
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Astrid Maria Thomas
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
| |
Collapse
|
11
|
Benameur T, Porro C, Twfieg ME, Benameur N, Panaro MA, Filannino FM, Hasan A. Emerging Paradigms in Inflammatory Disease Management: Exploring Bioactive Compounds and the Gut Microbiota. Brain Sci 2023; 13:1226. [PMID: 37626582 PMCID: PMC10452544 DOI: 10.3390/brainsci13081226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The human gut microbiota is a complex ecosystem of mutualistic microorganisms that play a critical role in maintaining human health through their individual interactions and with the host. The normal gastrointestinal microbiota plays a specific physiological function in host immunomodulation, nutrient metabolism, vitamin synthesis, xenobiotic and drug metabolism, maintenance of structural and functional integrity of the gut mucosal barrier, and protection against various pathogens. Inflammation is the innate immune response of living tissues to injury and damage caused by infections, physical and chemical trauma, immunological factors, and genetic derangements. Most diseases are associated with an underlying inflammatory process, with inflammation mediated through the contribution of active immune cells. Current strategies to control inflammatory pathways include pharmaceutical drugs, lifestyle, and dietary changes. However, this remains insufficient. Bioactive compounds (BCs) are nutritional constituents found in small quantities in food and plant extracts that provide numerous health benefits beyond their nutritional value. BCs are known for their antioxidant, antimicrobial, anticarcinogenic, anti-metabolic syndrome, and anti-inflammatory properties. Bioactive compounds have been shown to reduce the destructive effect of inflammation on tissues by inhibiting or modulating the effects of inflammatory mediators, offering hope for patients suffering from chronic inflammatory disorders like atherosclerosis, arthritis, inflammatory bowel diseases, and neurodegenerative diseases. The aim of the present review is to summarise the role of natural bioactive compounds in modulating inflammation and protecting human health, for their safety to preserve gut microbiota and improve their physiology and behaviour.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mohammed-Elfatih Twfieg
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nassima Benameur
- Faculty of Exact Sciences and Sciences of Nature and Life, Research Laboratory of Civil Engineering, Hydraulics, Sustainable Development and Environment (LARGHYDE), Mohamed Khider University, Biskra 07000, Algeria
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | | | - Abeir Hasan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
12
|
Aktas B. Gut Microbial Alteration in MPTP Mouse Model of Parkinson Disease is Administration Regimen Dependent. Cell Mol Neurobiol 2023; 43:2815-2829. [PMID: 36708421 PMCID: PMC9883829 DOI: 10.1007/s10571-023-01319-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Parkinson Disease (PD) is one of the most common neurodegenerative disorders characterized by loss of dopaminergic neurons involved in motor functions. Growing evidence indicates that gut microbiota communicates with the brain known as the gut-brain axis (GBA). Mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used in animal studies to investigate the GBA in PD. Various MPTP administration regimens are performed in PD mouse models involving one to multiple injections in 1 day or one injection per day for several days. The aim of this study is to investigate if the impact of MPTP on gut microbiota differs depending on the administration regimen. C57BL/6 mice were treated with acute or subchronic regimens of MPTP. Motor functions were assessed by open-field, catalepsy, and wire hanging tests. The cecum and the brain samples were obtained for microbiota and gene expression analyses, respectively. MPTP administration regimens differed in their ability to alter the gut microbiota. Firmicutes and Bacteroidota were both increased in subchronic mice while did not change and decreased, respectively, in acute mice. Verrucomicrobiota was elevated in acute MPTP mice but dropped in subchronic MPTP mice. Muribaculaceae was the predominant genus in all groups but acute mice. In acute mice, Akkermansia was increased and Colidextribacter was decreased; however, they showed an opposite trend in subchronic mice. These data suggest that MPTP mouse model cause a gut microbiota dysbiosis in an administration regimen dependent manner, and it is important to take consideration of mouse model to investigate the GBA in neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University Burdur, 15030, Burdur, Turkey.
| |
Collapse
|
13
|
Brown EL, Essigmann HT, Hoffman KL, Alexander AS, Newmark M, Jiang ZD, Suescun J, Schiess MC, Hanis CL, DuPont HL. IgA-Biome Profiles Correlate with Clinical Parkinson's Disease Subtypes. JOURNAL OF PARKINSON'S DISEASE 2023; 13:501-513. [PMID: 37212075 PMCID: PMC10357173 DOI: 10.3233/jpd-230066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parkinson's disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson's disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson's disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches.
Collapse
Affiliation(s)
- Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Heather T. Essigmann
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Jessika Suescun
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Mya C. Schiess
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Craig L. Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
14
|
Exploring the Neuroprotective Mechanism of Curcumin Inhibition of Intestinal Inflammation against Parkinson's Disease Based on the Gut-Brain Axis. Pharmaceuticals (Basel) 2022; 16:ph16010039. [PMID: 36678536 PMCID: PMC9866255 DOI: 10.3390/ph16010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease commonly seen in aged people, in which gastrointestinal dysfunction is the most common nonmotor symptom and the activation of the gut-brain axis by intestinal inflammation may contribute to the pathogenesis of PD. In a previous study, curcumin was considered neuroprotective in PD, and this neuroprotective mechanism may act by inhibiting intestinal inflammation. Therefore, the aim of this study was to evaluate the effect of curcumin on motor dysfunction and the loss of dopaminergic neurons in a PD mouse model, induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using open field test and pole test behavioral assessments and the immunofluorescence and Western blot methods. Moreover, the effects of curcumin on gastrointestinal dysfunction, gastric barrier function, pro-inflammatory cytokines, and the SIRT1/NRF2 pathway in intestinal tissues in a PD mouse model were assessed using fecal parameters and intestinal dynamics, immunofluorescence, ELISA, and Western blot. A motor impairment study of an MPTP-induced mouse group prior to treatment with curcumin had a lower total movement distance and a slow average speed, while there was no statistical difference in the curcumin group. After treatment with curcumin, the total movement distance and average speed improved, the tyrosine hydroxylase (TH) rate in the substantia nigra pars compacta (SNpc) and striatum were reduced, the pyroptosis of AIM2 and caspase-1 activations were inhibited, and intestinal inflammatory factors and intestinal inflammation were reduced. Curcumin improved gastrointestinal disorders and gastrointestinal barrier function in the MPTP-induced mice and reversed MPTP-induced motor dysfunction and dopaminergic neuron loss in mice. The above effects may be partly dependent on curcumin activation of the SIRT1/NRF2 pathway in the colon. This study provides a potential opportunity to develop new preventive measures and novel therapeutic approaches that could target the gut-brain axis in the context of PD and provide a new intervention in the treatment of Parkinson's disease.
Collapse
|
15
|
Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. J Neural Transm (Vienna) 2022; 129:1397-1418. [PMID: 36322206 PMCID: PMC9628588 DOI: 10.1007/s00702-022-02559-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease (PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiology is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the topological organization of functional mood-related, motor and other essential brain network connections due to alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiology and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, cognitive disposition and other co-morbidities awaits further elucidation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
16
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|