1
|
Godbole N, Lai A, Carrion F, Scholz-Romero K, Ravichandran A, Kalita-de Croft P, McCart Reed AE, Joshi V, Lakhani SR, Masud MK, Yamauchi Y, Perrin L, Hooper J, Bray L, Guanzon D, Salomon C. Extracellular vesicle miRNAs from three-dimensional ovarian cancer in vitro models and their implication in overall cancer survival. Heliyon 2025; 11:e42188. [PMID: 40034306 PMCID: PMC11872480 DOI: 10.1016/j.heliyon.2025.e42188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Ovarian cancer is the most common gynaecological malignancy and the seventh most diagnosed cancer in females worldwide. Currently, it is the sixth leading cause of cancer related mortality among patients globally. The heterogenous origin of the disease and unambiguous nature of the clinical symptoms leading to delayed detection has been one of the key reasons for increasing mortality. Hence new approaches are required to understand the biology of ovarian cancer, where the use of cell culture models that mimic the physiology of the disease is fundamental. Cell culture serves as a crucial in vitro tool, contributing to our comprehension of various aspects of cell biology, tissue morphology, disease mechanisms, drug responses, protein production, and tissue engineering. A significant portion of in vitro studies rely on two-dimensional (2D) cell cultures, however, these cultures present notable limitations, for example disruptions in cellular and extracellular interactions, alterations in cell morphology, polarity, and division mechanisms. Recently, extracellular vesicles have been identified as crucial players in cell biology as part of the communication system that cancer cells use to metastasize. We optimized and compared three-dimensional (3D) culture of ovarian cancer cells lines (SKOV-3 and OVCAR-3) with two-dimensional models based on their protein and miRNA content. We further investigated whether extracellular vesicles from these models reflect changes in cancer cells, and aid in the identification of overall survival in women with ovarian cancer.
Collapse
Affiliation(s)
- Nihar Godbole
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Centre for Clinical Diagnostics, UQ Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Centre for Clinical Diagnostics, UQ Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Katherin Scholz-Romero
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Centre for Clinical Diagnostics, UQ Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Akhilandeshwari Ravichandran
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Kelvin Grove, QLD 5059, Australia
| | - Priyakshi Kalita-de Croft
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Centre for Clinical Diagnostics, UQ Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Mostafa Kamal Masud
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lewis Perrin
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Mater Research Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - John Hooper
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Mater Research Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Laura Bray
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Kelvin Grove, QLD 5059, Australia
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Centre for Clinical Diagnostics, UQ Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Centre for Clinical Diagnostics, UQ Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- UQ Centre for Extracellular Nanomedicine, Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia
| |
Collapse
|
2
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Zhang Y, Shi W, Chen R, Gu Y, Zhao M, Song J, Shi Z, Wu J, Chang H, Liu M. LINC01133 regulates MARCKS expression via sponging miR-30d-5p to promote the development of lung squamous cell carcinoma. Transl Oncol 2024; 44:101931. [PMID: 38599002 PMCID: PMC11015483 DOI: 10.1016/j.tranon.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
LncRNAs are vital regulators for lung squamous cell carcinoma (LUSC). However, the detailed role that LINC01133 plays in LUSC is unclear. This work sought to explore the potential function of LINC01133.Levels of LINC01133, miR-30d-5p, and MARCKS were separately tested in both tissues and cells using qRT-PCR. Proliferation was assessed through MTT experiment and apoptosis was detected upon flow cytometry. Transwell experiments were implemented to evaluate migratory and invasive abilities. The interaction between two genes was affirmed through luciferase reporter assay and RNA pull-down experiment. Western blotting measured the protein level of MARCKS. Animal models were established and tissues were taken for IHC analysis of MARCKS and Ki67.LINC01133 was elevated in LUSC and its downregulation could suppress proliferation, migration and invasion but induced apoptosis. LINC01133 interacted with and regulated the binding of miR-30d-5p to MARCKS. LINC01133/miR-30d-5p axis mediated proliferation, apoptosis, migration and invasion in LUSC cells, as well as modulated tumor growth in animal models. LINC01133 interacted with miR-30d-5p to modulate MARCKS expression, contributes to promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. These findings could provide possible therapeutic targets in view of LUSC treatment in the future.
Collapse
Affiliation(s)
- Yajun Zhang
- Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
| | - Woda Shi
- Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
| | - Rongjin Chen
- Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Yan Gu
- Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Mengjie Zhao
- Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Zhan Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - HuiWen Chang
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Ming Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| |
Collapse
|
4
|
Ding Y, Huang X, Ji T, Qi C, Gao X, Wei R. The emerging roles of miRNA-mediated autophagy in ovarian cancer. Cell Death Dis 2024; 15:314. [PMID: 38702325 PMCID: PMC11068799 DOI: 10.1038/s41419-024-06677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yamin Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cong Qi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Rongbin Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
5
|
Szubert M, Nowak-Glück A, Domańska-Senderowska D, Szymańska B, Sowa P, Rycerz A, Wilczyński JR. miRNA Expression Profiles in Ovarian Endometriosis and Two Types of Ovarian Cancer-Endometriosis-Associated Ovarian Cancer and High-Grade Ovarian Cancer. Int J Mol Sci 2023; 24:17470. [PMID: 38139300 PMCID: PMC10743418 DOI: 10.3390/ijms242417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometriosis-associated ovarian cancer (EOC) consisting of endometrioid cancer and clear-cell ovarian cancer could be promoted by many factors. miRNAs, which are small, non-coding molecules of RNA, are among them. The aim of this study was to detect miRNAs connected with the malignant transformation of endometriosis. FFPE (formalin-fixed, paraffin-embedded) samples of 135 patients operated on for endometriosis and different types of ovarian cancer (EOC and HGSOC-high-grade serous ovarian cancer) were studied. Healthy ovarian tissue was used as a control group. From the expression panel of 754 miRNAs, 7 were chosen for further tests according to their ROC (receiver operating characteristic) curves: miR-1-3p, miR-125b-1-3p, miR-31-3p, miR-200b-3p, miR-502-5p, miR-503-5p and miR-548d-5p. Furthermore, other potentially important clinical data were analysed, which included age, BMI, Ca-125 concentration, miscarriages and deliveries and concomitant diseases such as hypertension, type 2 diabetes and smoking. Among the miRNAs, miR200b-3p had the lowest expression in neoplastic tissues. miR31-3p had the highest expression in women without any lesions in the ovaries. miR-502-5p and miR-548-5p did not differ between the studied groups. The examined miRNA panel generally distinguished significantly normal ovarian tissue and endometriosis, normal ovarian tissue and cancer, and endometriosis and cancer. The malignant transformation of endometriosis is dependent on different factors. miRNA changes are among them. The studied miRNA panel described well the differences between endometriosis and EOC but had no potential to differentiate types of ovarian cancer according to their origin. Therefore, examination of a broader miRNA panel is needed and might prove itself advantageous in clinical practice.
Collapse
Affiliation(s)
- Maria Szubert
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Club 35. Polish Society of Gynaecologists and Obstetricians, ul. Cybernetyki 7F/87, 02-677 Warsaw, Poland
| | - Anna Nowak-Glück
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| | | | - Bożena Szymańska
- Research Laboratory CoreLab, Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Piotr Sowa
- Department of Pathology, M. Pirogow’s Teaching Hospital, Wilenska 37 St., 94-029 Lodz, Poland;
| | - Aleksander Rycerz
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 St., 92-215 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| |
Collapse
|
6
|
Mohebifar H, Sabbaghian A, Farazmandfar T, Golalipour M. Construction and analysis of pseudogene-related ceRNA network in breast cancer. Sci Rep 2023; 13:21874. [PMID: 38072995 PMCID: PMC10711010 DOI: 10.1038/s41598-023-49110-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women. The present study explored the potential role of pseudogenes in BC via construction and analysis of a competing endogenous RNA (ceRNA) network through a three-step process. First, we screened differentially expressed genes in nine BC datasets. Then the gene-pseudogenes pairs (nine hub genes) were selected according to the functional enrichment and correlation analysis. Second, the candidate hub genes and interacting miRNAs were used to construct the ceRNA network. Further analysis of the ceRNA network revealed a crucial ceRNA module with two genes-pseudogene pairs and two miRNAs. The in-depth analysis identified the GBP1/hsa-miR-30d-5p/GBP1P1 axis as a potential tumorigenic axis in BC patients. In the third step, the GBP1/hsa-miR-30d-5p/GBP1P1 axis expression level was assessed in 40 tumor/normal BC patients and MCF-7 cell lines. The expression of GBP1 and GBP1P1 was significantly higher in the tumor compared to the normal tissue. However, the expression of hsa-miR-30d-5p was lower in tumor samples. Then, we introduced the GBP1P1 pseudogene into the MCF-7 cell line to evaluate its effect on GBP1 and hsa-miR-30d-5p expression. As expected, the GBP1 level increased while the hsa-miR-30d-5p level decreased in the GBP1P1-overexprsssing cell line. In addition, the oncogenic properties of MCF-7 (cell viability, clonogenicity, and migration) were improved after GBP1P1 overexpression. In conclusion, we report a ceRNA network that may provide new insight into the role of pseudogenes in BC development.
Collapse
Affiliation(s)
- Hossein Mohebifar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Amir Sabbaghian
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Touraj Farazmandfar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran.
| |
Collapse
|
7
|
Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel) 2023; 15:toxins15020140. [PMID: 36828454 PMCID: PMC9967916 DOI: 10.3390/toxins15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Xenoestrogens are natural or synthetic compounds that mimic the effect of endogenous estrogens and might cause cancer. We aimed to compare the global transcriptomic response to zearalenone (ZEA; mycotoxin) and bisphenol A (BPA; plastic additive) with the effect of physiological estradiol (E2) in the PEO1 human ovarian cell line by mRNA and microRNA sequencing. Estrogen exposure induced remarkable transcriptomic changes: 308, 288 and 63 genes were upregulated (log2FC > 1); 292, 260 and 45 genes were downregulated (log2FC < -1) in response to E2 (10 nM), ZEA (10 nM) and BPA (100 nM), respectively. Furthermore, the expression of 13, 11 and 10 miRNAs changed significantly (log2FC > 1, or log2FC < -1) after exposure to E2, ZEA and BPA, respectively. Functional enrichment analysis of the significantly differentially expressed genes and miRNAs revealed several pathways related to the regulation of cell proliferation and migration. The effect of E2 and ZEA was highly comparable: 407 genes were coregulated by these molecules. We could identify 83 genes that were regulated by all three treatments that might have a significant role in the estrogen response of ovarian cells. Furthermore, the downregulation of several miRNAs (miR-501-5p, let-7a-2-3p, miR-26a-2-3p, miR-197-5p and miR-582-3p) was confirmed by qPCR, which might support the proliferative effect of estrogens in ovarian cells.
Collapse
|
8
|
Alhammad R. Bioinformatics Analysis of the Prognostic Significance of CAND1 in ERα-Positive Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12102327. [PMID: 36292029 PMCID: PMC9600875 DOI: 10.3390/diagnostics12102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
The identification of novel prognostic biomarkers for breast cancer is an unmet clinical need. Cullin-associated and neddylation-dissociated 1 (CAND1) has been implicated in mediating carcinogenesis in prostate and lung cancers. In addition, CAND1 is an established prognostic biomarker for worse prognosis in liver cancer. However, the prognostic significance of CAND1 in breast cancer has not yet been explored. In this study, Breast Cancer Gene-Expression Miner (Bc-GenExMiner) and TIMER2.0 were utilized to explore the mRNA expression of CAND1 in ERα-positive breast cancer patients. The Kaplan–Meier plotter was used to explore the relationship between CAND1 expression and several prognostic indicators. The Gene Set Cancer Analysis (GSCA) web server was then used to explore the pathways of the genes that correlate with CAND1 in ERα-positive breast cancer. Immune infiltration was investigated using Bc-GenExMiner. Our bioinformatics analysis illustrates that breast cancer patients have higher CAND1 compared to normal breast tissue and that ERα-positive breast cancer patients with a high expression of CAND1 have poor overall survival (OS), distant metastasis-free survival (DMFS), and relapse-free survival (RFS) outcomes. Higher CAND1 expression was observed in histologic grade 3 compared to grades 2 and 1. Our results revealed that CAND1 positively correlates with lymph nodes and negatively correlates with the infiltration of immune cells, which is in agreement with published reports. Our findings suggest that CAND1 might mediate invasion and metastasis in ERα-positive breast cancer, possibly through the activation of estrogen and androgen signaling pathways; however, experiments should be carried out to further explore the role of CAND1 in activating the androgen and estrogen signaling pathways. In conclusion, the results suggest that CAND1 could be used as a potential novel biomarker for worse prognosis in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Rashed Alhammad
- Department of Pharmacology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|