1
|
Özdemir İ, Aktaş AŞ, Tuncer MC. Investigation of the effect of thymoquinone and doxorubicin on the EGFR/FOXP3 signaling pathway in OVCAR3 human ovarian adenocarcinoma cells. Acta Cir Bras 2025; 40:e401725. [PMID: 40172364 PMCID: PMC11960576 DOI: 10.1590/acb401725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 04/04/2025] Open
Abstract
PURPOSE To investigate the cytotoxic and apoptotic effects of the combination of doxorubicin (Dox) and thymoquinone (TQ) on ovarian adenocarcinoma cells (OVCAR3) via the EGFR/FOXP3 signaling pathway. METHODS We used human OVCAR3 and human skin keratinocyte cells (HaCaT). Different concentrations of TQ and Dox were applied to the cells for 24, 48, and 72 hours, and the cytotoxicity level was determined via the MTT method. Expression levels of EGFR/FOXP3 for cell proliferation and apoptosis were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. The colony counting was performed after DAPI staining, and the effect on cell proliferation was determined. RESULTS Cytotoxicity was found to be highest with TQ and Dox treatments, and cell migration was prevented, especially in the group that received combined TQ and Dox treatment. Moreover, using RT-qPCR analysis, activity in the EGFR and FOXP3 pathway was found to be downregulated the most with TQ, and the amount of protein decreased with TQ and Dox. CONCLUSIONS The findings showed that the greatest cytotoxic effect and the most apoptosis occurred during TQ treatment. Additionally, it was determined that a significant decrease in EGFR and FOXP3 levels occurred with the application of TQ and Dox.
Collapse
Affiliation(s)
- İlhan Özdemir
- Atatürk University – Faculty of Medicine – Department of Gynecology and Obstetrics – Erzurum – Turkey
| | - Ayfer Şanli Aktaş
- Dicle University – Faculty of Medicine – Department of Histology and Embryology – Diyarbakir – Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Faculty of Medicine – Department of Anatomy – Diyarbakir – Turkey
| |
Collapse
|
2
|
Sun R, Li S, Ye W, Lu Y. Development of a prognostic model based on lysosome-related genes for ovarian cancer: insights into tumor microenvironment, mutation patterns, and personalized treatment strategies. Cancer Cell Int 2024; 24:419. [PMID: 39702158 DOI: 10.1186/s12935-024-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is often associated with an unfavorable prognosis. Given the crucial involvement of lysosomes in tumor advancement, lysosome-related genes (LRGs) hold promise as potential therapeutic targets. METHODS To identify differentially expressed lysosome-related genes (DE-LRGs), we performed a matching analysis between differentially expressed genes (DEGs) in OC and the pool of LRGs. Genes with prognostic significance were analyzed using multiple regression analyses to construct a prognostic risk signature. The model's efficacy was validated through survival analysis in various cohorts. We further explored the model's correlation with clinical attributes, tumor microenvironment (TME), mutational patterns, and drug sensitivity. The quantitative real-time polymerase chain reaction (qRT-PCR) validated gene expression in OC cells. RESULTS A 10-gene prognostic risk signature was established. Survival analysis confirmed its predictive accuracy across cohorts. The signature served as an independent prognostic element for OC. The high-risk and low-risk groups demonstrated notable disparities in terms of immune infiltration patterns, mutational characteristics, and sensitivity to therapeutic agents. The qRT-PCR results corroborated and validated the findings obtained from the bioinformatic analyses. CONCLUSIONS We devised a 10-LRG prognostic model linked to TME, offering insights for tailored OC treatments.
Collapse
Affiliation(s)
- Ran Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Siyi Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Wanlu Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yanming Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
3
|
Stiff PJ, Kertowidjojo E, Potkul RK, Banerjee S, Mehrotra S, Small W, Stack MS, Drakes ML. Cabozantinib inhibits tumor growth in mice with ovarian cancer. Am J Cancer Res 2024; 14:4788-4802. [PMID: 39553221 PMCID: PMC11560812 DOI: 10.62347/zswv1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 11/19/2024] Open
Abstract
Ovarian cancer is usually detected in the advanced stages. Existing treatments for high grade serous ovarian cancer (HGSOC) are not adequate and approximately fifty percent of patients succumb to this disease and die within five years after diagnosis. We conducted pre-clinical studies in a mouse model of ovarian cancer to evaluate disease outcome in response to treatment with the multi-kinase inhibitor cabozantinib. Cabozantinib is a receptor tyrosine kinase inhibitor with multiple targets including vascular endothelial growth factor receptor-2 (VEGFR-2), associated with immune suppression in ovarian cancer. Mice (C57BL/6) were injected with ID8-RFP ovarian tumor cells and treated with cabozantinib. Studies investigated ascites development, tumor burden and regulation of anti-tumor immunity with treatment. Mice treated with cabozantinib had significantly decreased solid tumor burden and decreased malignant ascites as compared to untreated controls. Improved outcome in cabozantinib treated mice was associated with a significantly higher percentage of CD69 early activated T cells, a higher percentage of granzyme B secreting CD8 T cells, the enhanced release of cytokines and chemokines known to recruit CD8 T cells and amplify T cell function, as well as reduced VEGFR-2. Findings suggest that cabozantinib is an important clinical agent capable of improving ovarian cancer in mice potentially in part by priming the autologous immune system to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Patrick J Stiff
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| | | | - Ronald K Potkul
- Department of Obstetrics and Gynecology, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| | - Swarnali Banerjee
- Center for Data Science and Consulting, and Department of Mathematics and Statistics, Loyola University ChicagoChicago, IL 60660, USA
| | - Swati Mehrotra
- Department of Pathology, Edward Hines Jr. VA HospitalHines, IL 60141, USA
| | - William Small
- Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre DameSouth Bend, IN 46617, USA
| | - Maureen L Drakes
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| |
Collapse
|
4
|
Finch L, Broach V, Feinberg J, Al-Niaimi A, Abu-Rustum NR, Zhou Q, Iasonos A, Chi DS. ChatGPT compared to national guidelines for management of ovarian cancer: Did ChatGPT get it right? - A Memorial Sloan Kettering Cancer Center Team Ovary study. Gynecol Oncol 2024; 189:75-79. [PMID: 39042956 PMCID: PMC11402584 DOI: 10.1016/j.ygyno.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES We evaluated the performance of a chatbot compared to the National Comprehensive Cancer Network (NCCN) Guidelines for the management of ovarian cancer. METHODS Using NCCN Guidelines, we generated 10 questions and answers regarding management of ovarian cancer at a single point in time. Questions were thematically divided into risk factors, surgical management, medical management, and surveillance. We asked ChatGPT (GPT-4) to provide responses without prompting (unprompted GPT) and with prompt engineering (prompted GPT). Responses were blinded and evaluated for accuracy and completeness by 5 gynecologic oncologists. A score of 0 was defined as inaccurate, 1 as accurate and incomplete, and 2 as accurate and complete. Evaluations were compared among NCCN, unprompted GPT, and prompted GPT answers. RESULTS Overall, 48% of responses from NCCN, 64% from unprompted GPT, and 66% from prompted GPT were accurate and complete. The percentage of accurate but incomplete responses was higher for NCCN vs GPT-4. The percentage of accurate and complete scores for questions regarding risk factors, surgical management, and surveillance was higher for GPT-4 vs NCCN; however, for questions regarding medical management, the percentage was lower for GPT-4 vs NCCN. Overall, 14% of responses from unprompted GPT, 12% from prompted GPT, and 10% from NCCN were inaccurate. CONCLUSIONS GPT-4 provided accurate and complete responses at a single point in time to a limited set of questions regarding ovarian cancer, with best performance in areas of risk factors, surgical management, and surveillance. Occasional inaccuracies, however, should limit unsupervised use of chatbots at this time.
Collapse
Affiliation(s)
- Lindsey Finch
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vance Broach
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jacqueline Feinberg
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Ahmed Al-Niaimi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis S Chi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
5
|
Fromhage G, Obermayr E, Bednarz-Knoll N, Van Gorp T, Welsch E, Polterauer S, Braicu EI, Mahner S, Sehouli J, Vergote I, Concin N, Kurtz S, Steinbiss S, Torge A, Zeillinger R, Wölber L, Brandt B. Loss of copy numbers of retrotransposons (HERVK) on chromosome 7p11.2 impacts EGFR (Epidermal Growth Factor Receptor)-induced phenotypes for platinum sensitivity and long-term survival in ovarian cancer-A study from the OVCAD consortium. Int J Cancer 2024; 155:934-945. [PMID: 38709956 DOI: 10.1002/ijc.34976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
We analyzed variations in the epidermal growth factor receptor (EGFR) gene and 5'-upstream region to identify potential molecular predictors of treatment response in primary epithelial ovarian cancer. Tumor tissues collected during debulking surgery from the prospective multicenter OVCAD study were investigated. Copy number variations in the human endogenous retrovirus sequence human endogenous retrovirus K9 (HERVK9) and EGFR Exons 7 and 9, as well as repeat length and loss of heterozygosity of polymorphic CA-SSR I and relative EGFR mRNA expression were determined quantitatively. At least one EGFR variation was observed in 94% of the patients. Among the 30 combinations of variations discovered, enhanced platinum sensitivity (n = 151) was found dominantly with HERVK9 haploidy and Exon 7 tetraploidy, overrepresented among patients with survival ≥120 months (24/29, p = .0212). EGFR overexpression (≥80 percentile) was significantly less likely in the responders (17% vs. 32%, p = .044). Multivariate Cox regression analysis, including age, FIGO stage, and grade, indicated that the patients' subgroup was prognostically significant for CA-SSR I repeat length <18 CA for both alleles (HR 0.276, 95% confidence interval 0.109-0.655, p = .001). Although EGFR variations occur in ovarian cancer, the mRNA levels remain low compared to other EGFR-mutated cancers. Notably, the inherited length of the CA-SSR I repeat, HERVK9 haploidy, and Exon 7 tetraploidy conferred three times higher odds ratio to survive for more than 10 years under therapy. This may add value in guiding therapies if determined during follow-up in circulating tumor cells or circulating tumor DNA and offers HERVK9 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gesa Fromhage
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Obermayr
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Toon Van Gorp
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Welsch
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Kurtz
- Center for Bioinformatics Hamburg, MIN-Faculty, Universität Hamburg, Hamburg, Germany
| | - Sascha Steinbiss
- DCSO Deutsche Cyber-Sicherheitsorganisation GmbH, Berlin, Germany
| | - Antje Torge
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Linn Wölber
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
7
|
Zeng H, Wang W, Zhang L, Lin Z. HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:14. [PMID: 38835349 PMCID: PMC11149107 DOI: 10.20517/cdr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3), which is part of the HER family, is aberrantly expressed in various human cancers. Since HER3 only has weak tyrosine kinase activity, when HER3 ligand neuregulin 1 (NRG1) or neuregulin 2 (NRG2) appears, activated HER3 contributes to cancer development and drug resistance by forming heterodimers with other receptors, mainly including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Inhibition of HER3 and its downstream signaling, including PI3K/AKT, MEK/MAPK, JAK/STAT, and Src kinase, is believed to be necessary to conquer drug resistance and improve treatment efficiency. Until now, despite multiple anti-HER3 antibodies undergoing preclinical and clinical studies, none of the HER3-targeted therapies are licensed for utilization in clinical cancer treatment because of their safety and efficacy. Therefore, the development of HER3-targeted drugs possessing safety, tolerability, and sensitivity is crucial for clinical cancer treatment. This review summarizes the progress of the mechanism of HER3 in drug resistance, the HER3-targeted therapies that are conducted in preclinical and clinical trials, and some emerging molecules that could be used as future designed drugs for HER3, aiming to provide insights for future research and development of anticancer drugs targeting HER3.
Collapse
Affiliation(s)
- Huilan Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Mohamady S, Khalil AF, Naguib BH, Nafie MS, Tawfik HO, Shaldam MA. Tailored horseshoe-shaped nicotinonitrile scaffold as dual promising c-Met and Pim-1 inhibitors: Design, synthesis, SAR and in silico study. Bioorg Chem 2024; 143:106988. [PMID: 37995644 DOI: 10.1016/j.bioorg.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
For the horseshoe tactic to succeed in inhibiting c-Met and Pim-1, the nicotinonitrile derivatives (2a-n) were produced in high quantities by coupling acetyl phenylpyrazole (1) with the proper aldehydes and ethyl cyanoacetate under basic conditions. Consistent basic and spectroscopic data (NMR, IR, Mass, and HPLC) supported the new products' structural findings. With IC50 potency in nanomolar ranges, these compounds had effectively repressed them, particularly compounds 2d and 2 h, with IC50 values below 200 nM. The most potent compounds (2d and 2 h) were tested for their antitumor effects against prostate (PC-3), colon (HCT-116), and breast (MDA-MB-231) and were evaluated in comparison to the anticancer drug tivantinib using the MTT assay. Similar to tivantinib, these compounds showed good antiproliferative properties against the HCT-116 tumor cells while having low cytotoxicity towards healthy fetal colon (FHC) cells. In the HCT-116 cell line, their ability to trigger the apoptotic cascade was also investigated by looking at the level of Bax and Bcl-2 as well as the activation of the proteolytic caspase cascade. When HCT-116 cells were exposed to compounds 2d and 2 h in comparison to the control, active caspase-3 levels increased. The HCT-116 cell line also upregulated Bcl-2 protein levels and downregulated Bax levels. Additionally, when treated with compound 2d, the HCT-116 cell cycle was primarily stopped at the S phase. Compared to the control, compound 2d treatment significantly inhibited the protein expression levels of c-Met and Pim-1 kinases in the treated HCT-116 cells. Thorough molecular modeling analyses, such as molecular docking and dynamic simulation, were performed to ascertain the binding mechanism and stability of the target compounds.
Collapse
Affiliation(s)
- Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt.
| | - Ahmed F Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Bassem H Naguib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| |
Collapse
|
9
|
Parashar S, Akhter N, Paplomata E, Elgendy IY, Upadhyaya D, Scherrer-Crosbie M, Okwuosa TM, Sanghani RM, Chalas E, Lindley KJ, Dent S. Cancer Treatment-Related Cardiovascular Toxicity in Gynecologic Malignancies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:159-173. [PMID: 37144116 PMCID: PMC10152205 DOI: 10.1016/j.jaccao.2023.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/06/2023] Open
Abstract
Improvements in early detection and treatment of gynecologic malignancies have led to an increasing number of survivors who are at risk of long-term cardiac complications from cancer treatment. Multimodality therapies for gynecologic malignancies, including conventional chemotherapy, targeted therapeutics, and hormonal agents, place patients at risk of cancer therapy-related cardiovascular toxicity during and following treatment. Although the cardiotoxicity associated with some female predominant cancers (eg, breast cancer) have been well recognized, there has been less recognition of the potential adverse cardiovascular effects of anticancer therapies used to treat gynecologic malignancies. In this review, the authors provide a comprehensive overview of the cancer therapeutic agents used in gynecologic malignancies, associated cardiovascular toxicities, risk factors for cardiotoxicity, cardiac imaging, and prevention strategies.
Collapse
Affiliation(s)
- Susmita Parashar
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Address for correspondence: Dr Susmita Parashar, Division of Cardiology, Department of Medicine, Emory University, Atlanta, 2665 North Decatur Road, Suite #240, Decatur, Georgia 30033, USA. @emorywomenheart
| | - Nausheen Akhter
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Islam Y. Elgendy
- Division of Cardiology, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Deepa Upadhyaya
- Division of Cardiology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Marielle Scherrer-Crosbie
- Cardiovascular Medicine Division, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tochukwu M. Okwuosa
- Division of Cardio-Oncology, Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Rupa M. Sanghani
- Division of Cardiology, Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Eva Chalas
- Division of Obstetrics and Gynecology, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Kathryn J. Lindley
- Division of Cardiology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan Dent
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Wieser V, Tsibulak I, Reimer DU, Zeimet AG, Fiegl H, Hackl H, Marth C. An angiogenic tumor phenotype predicts poor prognosis in ovarian cancer. Gynecol Oncol 2023; 170:290-299. [PMID: 36758419 DOI: 10.1016/j.ygyno.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Epithelial ovarian cancer (OC) is the deadliest gynecological malignancy worldwide. Blocking angiogenesis with bevacizumab, an antibody targeting vascular endothelial growth factor (VEGF), shows efficacy in different lines of OC therapy. This study investigates the clinical impact of tumoral expression of angiogenesis-related genes and their association with bevacizumab response in OC in retrospective analysis of three independent cohorts. METHODS mRNA expression of seven angiogenic genes (VEGF, VEGFR2, PDGFA, PDGFB, PDGFRA, PDGFRB, KIT) was quantified in an inception OC cohort (n = 195) and a transcriptional tumor angiogenesis score from 0 to 3 was established and linked to progression-free survival (PFS) and overall survival (OS). This score was corroborated in an independent publicly available cohort from The Cancer Genome Atlas (TCGA, n = 582) and prediction of therapeutic efficacy of bevacizumab by the angiogenesis score was analyzed in the Gene Expression Omnibus (GEO) dataset GSE140082 (n = 380) from the ICON7-trial. RESULTS The tumor angiogenesis score prognosticated PFS and OS in patients with OC from the inception cohort (p < 0.001, respectively). Tumoral PDGFA expression (PFS: HR 2.46, p = 0.005; OS: HR 2.26, p = 0.011) and a high tumoral transcriptional angiogenesis score (PFS: HR 1.41, p = 0.018) were identified as independent predictors of clinical outcome. The transcriptional angiogenesis score exhibited a significant though smaller effect size on PFS in the TCGA cohort. However, in the ICON7-trial, the angiogenesis score was not associated with benefit of bevacizumab treatment. CONCLUSIONS Our study indicates that tumoral expression of angiogenic genes is unfavorable in OC. The established score could be used to identify patients who respond to targeted angiogenic therapies, a concept that warrants prospective controlled clinical trials.
Collapse
Affiliation(s)
- Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Uwe Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|