1
|
Vikulova ES, Dorovskikh SI, Basova TV, Zheravin AA, Morozova NB. Silver CVD and ALD Precursors: Synthesis, Properties, and Application in Deposition Processes. Molecules 2024; 29:5705. [PMID: 39683864 DOI: 10.3390/molecules29235705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarized the developments in the field of volatile silver complexes, which can serve as precursors in gas-transport reactions for the production of thin films and metal nanoparticles via chemical vapor deposition (CVD) and atomic layer deposition (ALD). Silver-based films and nanoparticles are widely used in various high-tech fields, including medicine. For effective use in CVD and ALD processes, the properties of silver precursors must be balanced in terms of volatility, thermal stability, and reactivity. In this review, we focus on the synthesis and comprehensive analysis of structural and thermal characteristics for the most promising classes of volatile silver complexes, as well as organometallic compounds. Following the specifics of silver chemistry, some features of the use of precursors and their selection, as well as several key directions to improving the efficiency of silver material deposition processes, are also discussed.
Collapse
Affiliation(s)
- Evgeniia S Vikulova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Ac. Lavrentiev Ave. 3, 630090 Novosibirsk, Russia
| | - Svetlana I Dorovskikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Ac. Lavrentiev Ave. 3, 630090 Novosibirsk, Russia
| | - Tamara V Basova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Ac. Lavrentiev Ave. 3, 630090 Novosibirsk, Russia
| | - Aleksander A Zheravin
- Meshalkin National Medical Research Center, Ministry of Public Health of the Russian Federation, Rechkunovskaya Str. 15, 630055 Novosibirsk, Russia
| | - Natalya B Morozova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Ac. Lavrentiev Ave. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Sergeevichev DS, Dorovskikh SI, Vikulova ES, Chepeleva EV, Vasiliyeva MB, Koretskaya TP, Fedorenko AD, Nasimov DA, Guselnikova TY, Popovetsky PS, Morozova NB, Basova TV. Vapor-Phase-Deposited Ag/Ir and Ag/Au Film Heterostructures for Implant Materials: Cytotoxic, Antibacterial and Histological Studies. Int J Mol Sci 2024; 25:1100. [PMID: 38256173 PMCID: PMC10816904 DOI: 10.3390/ijms25021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which an antibacterial component (silver) was deposited: Ag/Ir(Au)/Ti(CFR-PEEK). The biocidal effect of the heterostructures was investigated, the effect of the surface relief of the carrier and the metal sublayer on antibacterial activity was established, and the dynamics of silver dissolution was evaluated. It has been shown that the activity of Ag/Ir heterostructures was due to high Ag+ release rates, which led to rapid (2-4 h) inhibition of P. aeruginosa growth. In the case of Ag/Au type heterostructures, the inhibition of the growth of P. aeruginosa and S. aureus occurred more slowly (from 6 h), and the antibacterial activity appeared to be due to the contribution of two agents (Ag+ and Au+ ions). It was found, according to the in vitro cytotoxicity study, that heterostructures did not exhibit toxic effects (cell viability > 95-98%). An in vivo biocompatibility assessment based on the results of a morphohistological study showed that after implantation for a period of 30 days, the samples were characterized by the presence of a thin fibrous capsule without volume thickening and signs of inflammation.
Collapse
Affiliation(s)
- David S. Sergeevichev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
| | - Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Evgeniia S. Vikulova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Elena V. Chepeleva
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
| | - Maria B. Vasiliyeva
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
- V. Zelman’s Institute of Medicine and Psychology, Novosibirsk State University, 2, Pirogov St., Novosibirsk 630090, Russia
| | - Tatiana P. Koretskaya
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Anastasiya D. Fedorenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Dmitriy A. Nasimov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., Novosibirsk 630090, Russia;
| | - Tatiana Y. Guselnikova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Pavel S. Popovetsky
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Natalya B. Morozova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| |
Collapse
|
4
|
Siegel J, Vyhnálková B, Savenkova T, Pryjmaková J, Slepička P, Šlouf M, Hubáček T. Surface Engineering of AgNPs-Decorated Polyetheretherketone. Int J Mol Sci 2023; 24:ijms24021432. [PMID: 36674946 PMCID: PMC9865445 DOI: 10.3390/ijms24021432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.
Collapse
Affiliation(s)
- Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
- Correspondence: ; Tel.: +420-220-445-149
| | - Barbora Vyhnálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Tatiana Savenkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Tomáš Hubáček
- Biology Centre of the Czech Academy of Sciences, SoWa National Research Infrastructure, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Kantaros A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int J Mol Sci 2022; 23:ijms232314621. [PMID: 36498949 PMCID: PMC9738732 DOI: 10.3390/ijms232314621] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Over the past ten years, the use of additive manufacturing techniques, also known as "3D printing", has steadily increased in a variety of scientific fields. There are a number of inherent advantages to these fabrication methods over conventional manufacturing due to the way that they work, which is based on the layer-by-layer material-deposition principle. These benefits include the accurate attribution of complex, pre-designed shapes, as well as the use of a variety of innovative raw materials. Its main advantage is the ability to fabricate custom shapes with an interior lattice network connecting them and a porous surface that traditional manufacturing techniques cannot adequately attribute. Such structures are being used for direct implantation into the human body in the biomedical field in areas such as bio-printing, where this potential is being heavily utilized. The fabricated items must be made of biomaterials with the proper mechanical properties, as well as biomaterials that exhibit characteristics such as biocompatibility, bioresorbability, and biodegradability, in order to meet the strict requirements that such procedures impose. The most significant biomaterials used in these techniques are listed in this work, but their advantages and disadvantages are also discussed in relation to the aforementioned properties that are crucial to their use.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| |
Collapse
|