1
|
Musumeci A, Vinci M, Verbinnen I, Treccarichi S, Nigliato E, Chiavetta V, Greco D, Vitello GA, Federico C, Janssens V, Saccone S, Calì F. PPP2R5E: New gene potentially involved in specific learning disorders and myopathy. Gene 2025; 933:148945. [PMID: 39284558 DOI: 10.1016/j.gene.2024.148945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Protein phosphatase 2A (PP2A) is a family of multifunctional enzymatic complexes crucial for cellular signalling, playing a pivotal role in brain function and development. Mutations in specific genes encoding PP2A complexes have been associated with neurodevelopmental disorders with hypotonia and high risk of seizures. In the current work, we present an individual with specific learning problems, motor coordination disorders, hypotonia and behavioural issues. Although whole exome sequencing (WES) did not unveil pathogenic variants in known genes related to these symptoms, a de novo heterozygous variant Glu191Lys was identified within PPP2R5E, encoding the PP2A regulatory subunit B56ε. The novel variant was not observed in the four healthy brothers and was not detected as parental somatic mosaicism. The mutation predicted a change of charge of the mutated amino acid within a conserved LFDSEDPRER motif common to all PPP2R5 B-subunits. Biochemical assays demonstrated a decreased interaction with the PP2A A and C subunits, leading to disturbances in holoenzyme formation, and thus likely, function. For the first time, we report a potential causal link between the observed variant within the PPP2R5E gene and the symptoms manifested in the subject, spanning specific learning problems and motor coordination disorders potentially associated with myopathy.
Collapse
Affiliation(s)
- Antonino Musumeci
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Eleonora Nigliato
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Donatella Greco
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy.
| | - Francesco Calì
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| |
Collapse
|
2
|
Treccarichi S, Calì F, Vinci M, Ragalmuto A, Musumeci A, Federico C, Costanza C, Bottitta M, Greco D, Saccone S, Elia M. Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Curr Issues Mol Biol 2024; 46:6407-6422. [PMID: 39057025 PMCID: PMC11276073 DOI: 10.3390/cimb46070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
SRY-box transcription factor (SOX) genes, a recently discovered gene family, play crucial roles in the regulation of neuronal stem cell proliferation and glial differentiation during nervous system development and neurogenesis. Whole exome sequencing (WES) in patients presenting with generalized epilepsy, intellectual disability, and childhood emotional behavioral disorder, uncovered a de novo variation within SOX12 gene. Notably, this gene has never been associated with neurodevelopmental disorders. No variants in known genes linked with the patient's symptoms have been detected by the WES Trio analysis. To date, any MIM phenotype number associated with intellectual developmental disorder has not been assigned for SOX12. In contrast, both SOX4 and SOX11 genes within the same C group (SoxC) of the Sox gene family have been associated with neurodevelopmental disorders. The variant identified in the patient here described was situated within the critical high-mobility group (HMG) functional site of the SOX12 protein. This domain, in the Sox protein family, is essential for DNA binding and bending, as well as being responsible for transcriptional activation or repression during the early stages of gene expression. Sequence alignment within SoxC (SOX12, SOX4 and SOX11) revealed a high conservation rate of the HMG region. The in silico predictive analysis described this novel variant as likely pathogenic. Furthermore, the mutated protein structure predictions unveiled notable changes with potential deleterious effects on the protein structure. The aim of this study is to establish a correlation between the SOX12 gene and the symptoms diagnosed in the patient.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Alda Ragalmuto
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Carola Costanza
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy;
| | - Maria Bottitta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| |
Collapse
|
3
|
McKenna MC, O'Connor A, Lockhart A, Bogdanova-Mihaylova P, Brett F, Langan Y, Meaney J, Costigan D, Doherty CP, Bede P, Murphy SM, Hutchinson S. POLR3A-related disorders: expanding the clinical phenotype. J Neurol 2024; 271:3635-3638. [PMID: 38413463 DOI: 10.1007/s00415-024-12265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Affiliation(s)
| | | | - Andrew Lockhart
- Neurology Department, St. James's Hospital, Dublin 8, Ireland
| | | | - Francesca Brett
- Neuropathology Department, Beaumont Hospital, Dublin 9, Ireland
| | - Yvonne Langan
- Neurophysiology Department, St. James's Hospital, Dublin 8, Ireland
| | - James Meaney
- Radiology Department, St. James's Hospital, Dublin 8, Ireland
| | - Donal Costigan
- Neurology and Neurophysiology Department, Mater Private Hospital, Dublin 7, Ireland
| | - Colin P Doherty
- Neurology Department, St. James's Hospital, Dublin 8, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Bede
- Neurology Department, St. James's Hospital, Dublin 8, Ireland
| | - Sinéad M Murphy
- Neurology Department, Tallaght University Hospital, Dublin 24, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
4
|
Ruan DD, Ruan XL, Wang RL, Lin XF, Zhang YP, Lin B, Li SJ, Wu M, Chen Q, Zhang JH, Cheng Q, Zhang YW, Lin F, Luo JW, Zheng Z, Li YF. Clinical phenotype and genetic function analysis of a family with hypomyelinating leukodystrophy-7 caused by POLR3A mutation. Sci Rep 2024; 14:7638. [PMID: 38561452 PMCID: PMC10985069 DOI: 10.1038/s41598-024-58452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.
Collapse
Affiliation(s)
- Dan-Dan Ruan
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xing-Lin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruo-Li Wang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, 350001, China
| | - Xin-Fu Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yan-Ping Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bin Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shi-Jie Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Min Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qiong Cheng
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yi-Wu Zhang
- Department of Neurology, Youxi County General Hospital, Sanming, 365100, China
| | - Fan Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
| | - Zheng Zheng
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Yun-Fei Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Khan A, Al Shamsi B, Al Shehhi M, Kashgari AA, Al Balushi A, Al Dihan FA, Alghamdi MA, Manal A, González‐Álvarez AC, Arold ST, Eyaid W. Further delineation of Wiedemann-Rautenstrauch syndrome linked with POLR3A. Mol Genet Genomic Med 2024; 12:e2274. [PMID: 38348603 PMCID: PMC10958179 DOI: 10.1002/mgg3.2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 03/23/2024] Open
Abstract
Wiedemann-Rautenstrauch Syndrome (WRS; MIM 264090) is an extremely rare and highly heterogeneous syndrome that is inherited in a recessive fashion. The patients have hallmark features such as prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, facial dysmorphology, hypomyelination leukodystrophy, and mental impairment. Biallelic disease-causing variants in the RNA polymerase III subunit A (POLR3A) have been associated with WRS. Here, we report the first identified cases of WRS syndrome with novel phenotypes in three consanguineous families (two Omani and one Saudi) characterized by biallelic variants in POLR3A. Using whole-exome sequencing, we identified one novel homozygous missense variant (NM_007055: c.2456C>T; p. Pro819Leu) in two Omani families and one novel homozygous variant (c.1895G>T; p Cys632Phe) in Saudi family that segregates with the disease in the POLR3A gene. In silico homology modeling of wild-type and mutated proteins revealed a substantial change in the structure and stability of both proteins, demonstrating a possible effect on function. By identifying the homozygous variants in the exon 14 and 18 of the POLR3A gene, our findings will contribute to a better understanding of the phenotype-genotype relationship and molecular etiology of WRS syndrome.
Collapse
Affiliation(s)
- Amjad Khan
- Faculty of Science, Department of Biological Sciences (Zoology)University of Lakki MarwatLakki MarwatPakistan
- Institute for Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Alexander von Humboldt Fellowship FoundationBerlinGermany
| | - Bushra Al Shamsi
- National Genetics CenterThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
- Child Health DepartmentThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
| | - Maryam Al Shehhi
- National Genetics CenterThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
| | - Amna A. Kashgari
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC)King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard‐Health Affairs (MNGHA)RiyadhSaudi Arabia
- King Abdullah Specialized Children's Hospital (KASCH)Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Aaisha Al Balushi
- National Genetics CenterThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
- Child Health DepartmentThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
| | - Fahad A. Al Dihan
- College of MedicineKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Mohannad A. Alghamdi
- College of MedicineKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Abothnain Manal
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC)King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard‐Health Affairs (MNGHA)RiyadhSaudi Arabia
- King Abdullah Specialized Children's Hospital (KASCH)Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Ana C. González‐Álvarez
- Bioscience Program, Bioengineering Program, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Computational Biology Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Bioengineering Program, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Computational Biology Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierFrance
| | - Wafaa Eyaid
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC)King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard‐Health Affairs (MNGHA)RiyadhSaudi Arabia
- King Abdullah Specialized Children's Hospital (KASCH)Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| |
Collapse
|
6
|
Sun L, Lin W, Meng H, Zhang W, Hou S. A Chinese patient with POLR3A-related leukodystrophy: a case report and literature review. Front Neurol 2023; 14:1269237. [PMID: 37965164 PMCID: PMC10641775 DOI: 10.3389/fneur.2023.1269237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Background Leukodystrophies are hereditary white matter diseases characterized by genetic polymorphisms and considerable phenotypic variability. They can be classified into myelin and non-myelin malformations. These diseases are rare, affecting 1 out of 250,000-500,000 individuals and can manifest at any age. A subtype of leukodystrophy, associated with missense mutations in the RNA polymerase subunit III (POLR3A) gene, is inherited in an autosomal recessive manner. Case report We report and analyse a case of a 34-year-old female who presented with ataxia. Magnetic Resonance Imaging (MRI) of the brain revealed demyelinating lesions in the white matter. Genetic testing identified the c.4044C > G and c.1186-2A > G variants in the POLR3A gene. The patient was diagnosed with hypomyelinating leukodystrophy type 7 and received neurotrophic and symptomatic supportive therapy. However, after 1 month of follow-up, there was no improvement in her symptoms. Conclusion POLR3A-induced leukodystrophy is relatively rare and not well understood, making it challenging to diagnose and easy to overlook. The prognosis for this disease is generally poor, significantly impacting the quality of life of affected individuals. Currently, no cure is available for this condition, and treatment is limited to managing symptoms. Further research into new treatment methods for POLR3A-induced leukodystrophy is imperative to improve the quality of life and potentially extend the life expectancy of patients.
Collapse
Affiliation(s)
| | | | | | | | - Shuai Hou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Butera A, Nicotera AG, Di Rosa G, Musumeci SA, Vitello GA, Musumeci A, Vinci M, Gloria A, Federico C, Saccone S, Calì F. PHF21A Related Disorder: Description of a New Case. Int J Mol Sci 2022; 23:ijms232416130. [PMID: 36555772 PMCID: PMC9783151 DOI: 10.3390/ijms232416130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
PHF21A (PHD finger protein 21A) gene, located in the short arm of chromosome 11, encodes for BHC80, a component of the Lysine Specific Demethylase 1, Corepressor of REST (LSD1-CoREST) complex. BHC80 is mainly expressed in the human fetal brain and skeletal muscle and acts as a modulator of several neuronal genes during embryogenesis. Data from literature relates PHF21A variants with Potocki-Shaffer Syndrome (PSS), a contiguous gene deletion disorder caused by the haploinsufficiency of PHF21A, ALX4, and EXT2 genes. Clinical cardinal features of PSS syndrome are multiple exostoses (due to the EXT2 involvement), biparietal foramina (due to the ALX4 involvement), intellectual disability, and craniofacial anomalies (due to the PHF21A involvement). To date, to the best of our knowledge, a detailed description of PHF21A-related disorder clinical phenotype is not described in the literature; in fact, only 14 subjects with microdeletion frameshift or nonsense variants concerning only PHF21A gene have been reported. All reported cases did not present ALX4 or EXT2 variants, and their clinical features did not fit with PSS diagnosis. Herein, by using Exome sequencing, and Sanger sequencing of the region of interest, we describe a case of a child with a paternally inherited (mosaicism of 5%) truncating variant of the PHF21A gene (c.649_650del; p.Gln217ValfsTer6), and discuss the new evidence. In conclusion, these patients showed varied clinical expressions, mainly including the presence of intellectual disability, epilepsy, hypotonia, and dysmorphic features. Our study contributes to describing the genotype-phenotype spectrum of patients with PHF21A-related disorder; however, the limited data in the literature have been unable to provide a precise diagnostic protocol for patients with PHF21A-related disorder.
Collapse
Affiliation(s)
- Ambra Butera
- Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonio Gennaro Nicotera
- Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Gabriella Di Rosa
- Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | | | | | - Antonino Musumeci
- Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Mirella Vinci
- Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Angelo Gloria
- Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
- Correspondence: (S.S.); (F.C.)
| | - Francesco Calì
- Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
- Correspondence: (S.S.); (F.C.)
| |
Collapse
|