1
|
Zhao H, Fu X, Gu W, Ding X, Zhua L. 53BP1, a known chromatin-associated factor that promotes DNA damage repair, is differentially modulated during bovine herpesvirus 1 infection in vitro and in vivo. Vet Microbiol 2025; 300:110334. [PMID: 39653013 DOI: 10.1016/j.vetmic.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) productive infection induces the formation of DNA double-strand breaks (DSBs), the most severe form of DNA lesions in cultured cells. 53BP1, a chromatin-associated factor, plays an essential role in DNA damage repair. In this study, we demonstrated that BoHV-1 productive infection in bovine kidney (MDBK) cells increased the expression of phosphorylated form of H2AX protein (γH2AX) and promoted the formation of γH2AX foci in the nucleus, indicative of enhanced DNA lesions. However, despite the elevated total 53BP1 protein levels, its recruitment to the nucleus and formation of 53BP1 foci was impaired, suggesting the disruption of 53BP1-mediated DNA damage repair (DDR). Furthermore, immunohistochemistry (IHC) studies showed that γH2AX was readily detected in trigeminal ganglia (TG) neurons of New Zealand White rabbits during both acute infection (day 3) and dexamethasone (DEX)-stimulated reactivation from latency, indicating the occurrence of DNA damage in vivo. This was consistent with the substantial reduction of 53BP1 protein expression in these tissues. Interestingly, 53BP1 was detected in a subset of TG neurons from both mock-infected and latently infected rabbits, but the localization profile of 53BP1 looks largely different, suggesting that 53BP1 may play a role in viral latency. Taken together, our findings demonstrated that BoHV-1 lytic infection impaired 53BP1-dependent DNA damage repair through differing mechanisms in vitro and in vivo, potentially promoting the accumulation of DNA damage. Moreover, virus latency altered the 53BP1 localization, underscoring the importance of 53BP1 signaling in the virus pathogenicity.
Collapse
Affiliation(s)
- Heci Zhao
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaotian Fu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenyuan Gu
- Center for Animal Diseases Control and Prevention of Hebei Province, Shijiazhuang 050035, China
| | - Xiuyan Ding
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Liqian Zhua
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China; Center for Animal Diseases Control and Prevention of Hebei Province, Shijiazhuang 050035, China.
| |
Collapse
|
2
|
Sun F, Ma W, Wang H, He H. Tegument protein UL3 of bovine herpesvirus 1 suppresses antiviral IFN-I signaling by targeting STING for autophagic degradation. Vet Microbiol 2024; 291:110031. [PMID: 38412580 DOI: 10.1016/j.vetmic.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.
Collapse
Affiliation(s)
- Fachao Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
3
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|