1
|
Gu X, Li Q, Qian T, Hu Q, Gu J, Ding W, Li M, Wang M, Lu H, Tao K. FGF21 promotes angiotensin II-induced abdominal aortic aneurysm via PI3K/AKT/mTOR pathway. Vascular 2024; 32:1369-1377. [PMID: 37522318 DOI: 10.1177/17085381231192688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disorder with a high mortality rate. It was previously reported that fibroblast growth factor 21 (FGF21) was highly expressed in AAA patients. Nonetheless, its underlying mechanism in AAA progression is unclarified. METHODS Angiotensin II (Ang-II) was used to induce AAA in human aortic vascular smooth muscle cells (HASMCs) and mouse models. Western blotting and RT-qPCR were utilized for measuring protein and RNA levels. Immunofluorescence staining was utilized for detecting LC3B expression in HASMCs. Elastica van Gieson staining was conducted for histological analysis of the abdominal aortas of mice. RESULTS FGF21 displayed a high level in Ang-II-stimulated HASMCs and AAA mice. FGF21 depletion ameliorated abdominal aorta dilation and Ang-II-triggered pathological changes in mice. FGF21 silencing hindered autophagy and PI3K/AKT/mTOR pathway. CONCLUSIONS FGF21 contributes to AAA progression by enhancing autophagy and activating PI3K/AKT/mTOR pathway.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/enzymology
- Angiotensin II
- Animals
- TOR Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Humans
- Disease Models, Animal
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Autophagy/drug effects
- Mice, Inbred C57BL
- Male
- Phosphatidylinositol 3-Kinase/metabolism
- Cells, Cultured
- Dilatation, Pathologic
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Qi Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Tianwei Qian
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Qi Hu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Wei Ding
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Ming Wang
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Huan Lu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| |
Collapse
|
2
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications. Cytokine Growth Factor Rev 2024; 77:91-103. [PMID: 38735805 DOI: 10.1016/j.cytogfr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Interleukin-17 (IL-17), a pivotal cytokine in immune regulation, has attracted significant attention in recent years due to its roles in various physiological and pathological processes. This review explores IL-17 in immunological context, emphasizing its structure, production, and signaling pathways. Specifically, we explore its involvement in inflammatory diseases and autoimmune diseases, with a notable focus on its emerging implications in cardiovascular system. Through an array of research insights, IL-17 displays multifaceted functions yet awaiting comprehensive discovery. Highlighting therapeutic avenues, we scrutinize the efficacy and clinical application of four marketed IL-17 mAbs along other targeted therapies, emphasizing their potential in immune-mediated disease management. Additionally, we discussed the novel IL-17D-CD93 axis, elucidating recent breakthroughs in their biological function and clinical implications, inviting prospects for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Li K, Wei M, Zhang D, Zhai S, Liu H. PANoptosis in vascular smooth muscle cells regulated by TNF-α/IL-1β can be a new target for alleviating the progression of abdominal aortic aneurysm. Physiol Genomics 2024; 56:158-166. [PMID: 38047310 DOI: 10.1152/physiolgenomics.00053.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
PANoptosis is an inflammatory programmed cell death (PCD) regulated by multifaceted PANoptosome complexes with major features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. The aim of this study was to investigate the role of PANoptosis on the occurrence and development of abdominal aortic aneurysm (AAA). Clinical samples of patients with AAA, angiotensin II (ANG II)-induced AAA mouse model, and ANG II-induced vascular smooth muscle cells (VSMCs) in vitro model were used for investigation on PANoptosis features. The expressions of ZBP1, AIM2, and other markers related to pyroptosis, apoptosis, and necroptosis elevated obviously in aortic wall tissues of patients with AAA, mice with AAA, and ANG II-treated VSMCs. ANG II treatment increased inflammatory cytokines levels in VSMCs. The stimulation of tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β) alone promoted VSMCs death, and the effect of TNF-α combined with IL-1β is more obvious. The expressions of ZBP1, AIM2, and related markers of pyroptosis, apoptosis, and necroptosis were increased by TNF-α and IL-1β combined treatment. Inhibition of TNF-α and/or IL-1β in mice with AAA improved the AAA pathology, reduced the loss of VSMCs, decreased the expression of ZBP1 and AIM2, and markers associated with pyroptosis, apoptosis, and necroptosis. PANoptosis features were observed in aortic wall tissues of patients with AAA, mice with AAA, and ANG II-treated VSMCs. The inhibition of TNF-α and IL-1β can alleviate PANoptosis in mice with AAA, which provides a new strategy for the prevention and treatment of AAA.NEW & NOTEWORTHY Early detection, diagnosis, and treatment are very important to improve the quality of life and prognosis of patients with abdominal aortic aneurysm (AAA). Based on the findings of apoptosis, necroptosis, and pyroptosis (PANoptosis) in AAA clinical samples, this study further explored the molecular mechanism in vivo and in vitro. Specifically, inhibition of tumor necrosis factor-α and interleukin-1β can reduce PANoptosis in vascular smooth muscle cell and thus alleviate the process of AAA.
Collapse
Affiliation(s)
- Kun Li
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Henan University, Zhengzhou, People's Republic of China
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Mingyang Wei
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Dongbin Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Hongzhi Liu
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|