1
|
Lorthongpanich C, Charoenwongpaiboon T, Septham P, Laowtammathron C, Srisook P, Kheolamai P, Manochantr S, Issaragrisil S. Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. Biosci Rep 2024; 44:BSR20240623. [PMID: 39364538 PMCID: PMC11499385 DOI: 10.1042/bsr20240623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Praphasri Septham
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chuti Laowtammathron
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Surapol Issaragrisil
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
2
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
3
|
Bonet F, Campuzano O, Córdoba-Caballero J, Alcalde M, Sarquella-Brugada G, Braza-Boïls A, Brugada R, Hernández-Torres F, Quezada-Feijoo M, Ramos M, Mangas A, Ranea JAG, Toro R. Role of miRNA-mRNA Interactome in Pathophysiology of Arrhythmogenic Cardiomyopathy. Biomedicines 2024; 12:1807. [PMID: 39200271 PMCID: PMC11351583 DOI: 10.3390/biomedicines12081807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Arrhythmogenic cardiomyopathy is an inherited entity characterized by irregular cell-cell adhesion, cardiomyocyte death and fibro-fatty replacement of ventricular myocytes, leading to malignant ventricular arrythmias, contractile dysfunction and sudden cardiac death. Pathogenic variants in genes that encode desmosome are the predominant cause of arrhythmogenic cardiomyopathy. Moreover, signalling pathways such as Wnt/ß-catenin and transforming growth factor-β have been involved in the disease progression. However, still little is known about the molecular pathophysiological mechanisms that underlie arrhythmogenic cardiomyopathy pathogenesis. We used mRNA and small RNA sequencing to analyse the transcriptome of health and arrhythmogenic cardiomyopathy of autopsied human hearts. Our results showed 697 differentially expressed genes and eight differentially expressed miRNAs. Functional enrichment revealed mitochondrial respiratory-related pathways, impaired response to oxidative stress, apoptotic signalling pathways and inflammatory response-related and extracellular matrix response pathways. Furthermore, analysis of the miRNA-mRNA interactome identified eleven negatively correlated miRNA-target pairs for arrhythmogenic cardiomyopathy. Our finding revealed novel arrhythmogenic cardiomyopathy-related miRNAs with important regulatory function in disease pathogenesis, highlighting their value as potential key targets for therapeutic approaches.
Collapse
Affiliation(s)
- Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - José Córdoba-Caballero
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain;
| | - Mireia Alcalde
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Aitana Braza-Boïls
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CAFAMUSME) Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ramon Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiology Service, Hospital Josep Trueta de Girona, 17007 Girona, Spain
| | - Francisco Hernández-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Monica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain;
- Institute of Biomedical Research in Málaga and platform of nanomedicine (IBIMA Plataforma BIONAND), 29071 Málaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
| |
Collapse
|
4
|
Chen M, Huang S, Weng S, Weng J, Guo R, Shi B, Liu D. Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4713-4725. [PMID: 38133657 DOI: 10.1007/s00210-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Septic cardiomyopathy (SCM) is manifested by impairment of cardiac contractile function with myocardial mitochondrial dysregulation. Natural product, songorine (SGR), a diterpenoid alkaloid derived from the lateral root of Aconitum carmichaeli, has been reported for the treatment of heart failure. Here, the protective role of SGR in heart injury of SCM was investigated and its underlying action of mechanism was explored. Firstly, the mouse and cardiomyocytes (H9C2 cell) SCM model induced by LPS were established to evaluate the therapeutic effect of SGR. The in vivo results exhibited that SGR rescued the survival rate of SCM mice, restored the loss of ejection fraction (EF) and fractional shortening (FS), and reduced left ventricular systolic diameter and left ventricular diastole diameter (LVIDs, LVIDd) by echocardiography. SGR improved the mitochondrial biosynthesis and myocardial fiber structure and arranged them neatly by transmission electron microscope (TEM). Further, SGR inhibited inflammatory targets myeloperoxidase (MPO) and tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and plasminogen activator inhibitor-1 (PAI-1). And SGR activated the mitochondrial biosynthesis-related peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), β-catenin, and matrix metallopeptidase 2 (MMP2) proteins. Meanwhile, the in vitro results showed that SGR promoted the increased the myocardial H9C2 cell viability, and mitochondrial biosynthesis and structure. SGR also blocked the inflammatory factors and reversed PGC-1α, β-catenin, and MMP2 in vitro, while SGR alleviated the myocardial cell apoptosis via flow cytometry. The findings indicate that SGR mitigates sepsis-caused myocardial damage by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. SGR may be a promising candidate for treatment of SCM.
Collapse
Affiliation(s)
- Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Shanjiao Huang
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Shuoyun Weng
- School of Ophthalmology&Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China.
| |
Collapse
|
5
|
Song M, Wang H, Liu C, Jin S, Liu B, Sun W. Non-coding RNAs as regulators of the Hippo pathway in cardiac development and cardiovascular disease. Front Pharmacol 2024; 15:1348280. [PMID: 38698813 PMCID: PMC11063341 DOI: 10.3389/fphar.2024.1348280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People’s Hospital, Shenyang, China
| | - Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Levantini E, Rizzo M. miRNAs: From Master Regulators of Gene Expression to Biomarkers Involved in Intercellular Communication. Biomedicines 2024; 12:721. [PMID: 38672077 PMCID: PMC11048632 DOI: 10.3390/biomedicines12040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that act as master regulators of gene expression, fine-tuning the activity of thousands of genes in our cells, by modulating gene expression at the post-transcriptional level [...].
Collapse
Affiliation(s)
- Elena Levantini
- Institute of Biomedical Technologies, CNR, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Milena Rizzo
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
7
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
8
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
9
|
Daneshmand-Parsa M, Nikpour P. Introduction of LPIN1 as a potential diagnostic and prognostic biomarker for gastric cancer via integrative bioinformatics analysis of a competing endogenous RNA network and experimental validation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1456-1463. [PMID: 39386228 PMCID: PMC11459342 DOI: 10.22038/ijbms.2024.74686.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
Objectives Identification of effective biomarkers is crucial for the heterogeneous disease of gastric cancer (GC). Recent studies have focused on the role of pseudogenes regulating gene expression through competing endogenous RNA (ceRNA) networks, however, the pseudogene-associated ceRNA networks in GC remain largely unknown. The current study aimed to construct and analyze a three-component ceRNA network in GC and experimentally validate a ceRNA. Materials and Methods A comprehensive analysis was conducted on the RNA-seq and miRNA-seq data of The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset to identify differentially-expressed mRNAs (DEMs), pseudogenes (DEPs), and miRNAs (DEMis). Pseudogene-associated ceRNA and protein-protein interaction (PPI) networks were constructed, and functional enrichment analyses were performed. DEMs and DEPs with degree centralities≥2 were selected for survival analysis. A ceRNA was further selected for experimental validation. Results 10,145 DEMs, 3576 DEPs, and 66 DEMis were retrieved and a ceRNA network was then constructed by including DEMis with concurrent interactions with at least a DEM and a DEP. Functional enrichment analysis demonstrated that DEMs of the ceRNA network were significantly enriched in cancer-associated pathways. LPIN1 and WBP1L were two mRNAs showing an association with STAD patients overall survival. Expression analysis of LPIN1 showed a significant decrease in GC tumors compared to non-tumor tissues (P=0.003). Conclusion Our research emphasizes the significant implications of ceRNA networks in the development of new biomarkers for the detection and prognosis of cancer. Further examination is necessary to explore the functional roles of LPIN1 in the pathogenesis of GC.
Collapse
Affiliation(s)
- Milad Daneshmand-Parsa
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurochemistry and Psychiatry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Suga N, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Matsuda S. Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update. Genes (Basel) 2023; 14:1736. [PMID: 37761875 PMCID: PMC10530369 DOI: 10.3390/genes14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan; (N.S.); (Y.I.); (S.Y.); (K.T.); (H.S.)
| |
Collapse
|
11
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|