1
|
Ikeda R, Kimura C, Nihashi Y, Umezawa K, Shimosato T, Takaya T. Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner. Life (Basel) 2024; 14:1572. [PMID: 39768281 PMCID: PMC11679607 DOI: 10.3390/life14121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.7 was treated with the receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation, then the effect of iSN40 on was quantified by tartrate-resistant acid phosphatase (TRAP) staining and real-time RT-PCR. iSN40 completely inhibited RANKL-induced differentiation into TRAP+ multinucleated osteoclasts by suppressing osteoclastogenic genes and inducing anti-/non-osteoclastogenic genes. Treatment with a TLR9 inhibitor, E6446, or a mutation in the CpG motif of iSN40 abolished the intracellular uptake and anti-osteoclastogenic effect of iSN40. These results demonstrate that iSN40 is subcellularly internalized and is recognized by TLR9 via its CpG motif, modulates RANKL-dependent osteoclastogenic gene expression, and ultimately inhibits osteoclastogenesis. Finally, iSN40 was confirmed to inhibit the osteoclastogenesis of RAW264.7 cells cocultured with the murine osteoblast cell line MC3T3-E1, presenting a model of bone remodeling. This study demonstrates that iSN40, which exerts both pro-osteogenic and anti-osteoclastogenic effects, may be a promising nucleic acid drug for osteoporosis.
Collapse
Affiliation(s)
- Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Chihaya Kimura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Koji Umezawa
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Institute for Aqua Regeneration, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
2
|
Miyoshi M, Shimosato T, Takaya T. Myogenic Anti-Nucleolin Aptamer iSN04 Inhibits Proliferation and Promotes Differentiation of Vascular Smooth Muscle Cells. Biomolecules 2024; 14:709. [PMID: 38927112 PMCID: PMC11201766 DOI: 10.3390/biom14060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease.
Collapse
MESH Headings
- Nucleolin
- Animals
- RNA-Binding Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Aptamers, Nucleotide/pharmacology
- Cell Proliferation/drug effects
- Phosphoproteins/metabolism
- Cell Differentiation/drug effects
- Humans
- Rats
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Mice
- Cells, Cultured
- Oligodeoxyribonucleotides/pharmacology
- Male
- Rats, Sprague-Dawley
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
3
|
Umezawa K, Ikeda R, Sakamoto T, Enomoto Y, Nihashi Y, Shinji S, Shimosato T, Kagami H, Takaya T. Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation. BIOTECH 2024; 13:11. [PMID: 38804293 PMCID: PMC11130974 DOI: 10.3390/biotech13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.
Collapse
Affiliation(s)
- Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Japan;
| | - Yuya Enomoto
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Centoral 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan;
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| |
Collapse
|
4
|
Dzhumashev D, Anton-Joseph S, Morel VJ, Timpanaro A, Bordon G, Piccand C, Aleandri S, Luciani P, Rössler J, Bernasconi M. Rapid liposomal formulation for nucleolin targeting to rhabdomyosarcoma cells. Eur J Pharm Biopharm 2024; 194:49-61. [PMID: 38029941 DOI: 10.1016/j.ejpb.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. More effective and less toxic therapies are urgently needed for high-risk patients. Peptide-guided targeted drug delivery can increase the therapeutic index of encapsulated drugs and improve patients' well-being. To apply this strategy to RMS, we identified the peptide F3 in a screening for peptides binding to RMS cells surface. F3 binds to nucleolin, which is present on the surface of RMS cells and is abundantly expressed at the mRNA level in RMS patients' biopsies compared to healthy tissues. We developed a rapid microfluidic formulation of F3-decorated PEGylated liposomes and remote loading of the chemotherapeutic drug vincristine. Size, surface charge, drug loading and retention of targeted and control liposomes were studied. Enhanced cellular binding and uptake were observed in three different nucleolin-positive RMS cell lines. Importantly, F3-functionalized liposomes loaded with vincristine were up to 11 times more cytotoxic than non-targeted liposomes for RMS cell lines. These results demonstrate that F3-functionalized liposomes are promising for targeted drug delivery to RMS and warrant further in vivo investigations.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Victoria J Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
5
|
Ishioka M, Nihashi Y, Sunagawa Y, Umezawa K, Shimosato T, Kagami H, Morimoto T, Takaya T. Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells. Int J Mol Sci 2023; 24:14380. [PMID: 37762684 PMCID: PMC10532123 DOI: 10.3390/ijms241814380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Mina Ishioka
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
6
|
Yamamoto M, Miyoshi M, Morioka K, Mitani T, Takaya T. Anti-nucleolin aptamer, iSN04, inhibits the inflammatory responses in C2C12 myoblasts by modulating the β-catenin/NF-κB signaling pathway. Biochem Biophys Res Commun 2023; 664:1-8. [PMID: 37127012 DOI: 10.1016/j.bbrc.2023.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
A myogenetic oligodeoxynucleotide, iSN04, is the 18-base single-stranded DNA that acts as an anti-nucleolin aptamer. iSN04 has been reported to restore myogenic differentiation by suppressing inflammatory responses in myoblasts isolated from patients with diabetes or healthy myoblasts exposed to cancer-releasing factors. Thus, iSN04 is expected to be a nucleic acid drug for the muscle wasting associated with chronic diseases. The present study investigated the anti-inflammatory mechanism of iSN04 in the murine myoblast cell line C2C12. Tumor necrosis factor-α (TNF-α) or Toll-like receptor (TLR) ligands (Pam3CSK4 and FSL-1) induced nuclear translocation and transcriptional activity of nuclear factor-κB (NF-κB), resulting in upregulated expression of TNF-α and interleukin-6. Pre-treatment with iSN04 significantly suppressed these inflammatory responses by inhibiting the nuclear accumulation of β-catenin induced by TNF-α or TLR ligands. These results demonstrate that antagonizing nucleolin with iSN04 downregulates the inflammatory effect mediated by the β-catenin/NF-κB signaling pathway in C2C12 cells. In addition, the anti-inflammatory effects of iSN04 were also observed in the rat smooth muscle cell line A10 and the murine adipocyte-like fibroblast cell line 3T3-L1, suggesting that iSN04 may be useful in preventing inflammation induced by metabolic disorders.
Collapse
Affiliation(s)
- Machi Yamamoto
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Kamino Morioka
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Takakazu Mitani
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|