1
|
Mahgoup EM. "Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications" "Gut Microbiota and Hypertension Therapy". Curr Hypertens Rep 2025; 27:14. [PMID: 40261509 DOI: 10.1007/s11906-025-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Systemic hypertension is a major risk factor for cardiovascular disease and remains challenging to manage despite the widespread use of antihypertensive medications and lifestyle modifications. This review explores the role of gut microbiota in hypertension development and regulation, highlighting key mechanisms such as inflammation, gut-brain axis modulation, and bioactive metabolite production. We also assess the potential of microbiota-targeted therapies for hypertension management. RECENT FINDINGS Emerging evidence indicates that microbial dysbiosis, high-salt diets, and gut-derived metabolites such as short-chain fatty acids (SCFAs) and bile acids significantly influence blood pressure regulation. Preclinical and early clinical studies suggest that interventions targeting gut microbiota, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), and dietary modifications, may help modulate hypertension. However, variability in gut microbiota composition among individuals and limited human trial data pose challenges to translating these findings into clinical practice. While microbiota-based therapies show promise for hypertension management, further research is needed to establish their efficacy and long-term effects. Large-scale, standardized clinical trials are crucial for understanding the therapeutic potential and limitations of gut microbiota interventions. A deeper understanding of the gut-hypertension axis could lead to novel, personalized treatment strategies for hypertension.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
- Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Mafe AN, Büsselberg D. Microbiome Integrity Enhances the Efficacy and Safety of Anticancer Drug. Biomedicines 2025; 13:422. [PMID: 40002835 PMCID: PMC11852609 DOI: 10.3390/biomedicines13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The intricate relationship between anticancer drugs and the gut microbiome influences cancer treatment outcomes. This review paper focuses on the role of microbiome integrity in enhancing the efficacy and safety of anticancer drug therapy, emphasizing the pharmacokinetic interactions between anticancer drugs and the gut microbiota. It explores how disruptions to microbiome composition, or dysbiosis, can alter drug metabolism, immune responses, and treatment side effects. By examining the mechanisms of microbiome disruption caused by anticancer drugs, this paper highlights specific case studies of drugs like cyclophosphamide, 5-fluorouracil, and irinotecan, and their impact on microbial diversity and clinical outcomes. The review also discusses microbiome-targeted strategies, including prebiotics, probiotics, postbiotics, and fecal microbiota transplantation (FMT), as promising interventions to enhance cancer treatment. Furthermore, the potential of microbiome profiling in personalizing therapy and integrating these interventions into clinical practice is explored. Finally, this paper proposes future research directions, including developing novel biomarkers and a deeper comprehension of drug-microbiome interactions, to respond to current gaps in knowledge and improve patient outcomes in cancer care.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Doha P.O. Box 22104, Qatar
| |
Collapse
|
3
|
Deepti I, Chettri B, Mehra A, Pinheiro AM, Ravi R. Faecal microbiota transplantation for recurrent Clostridiodes difficile infection & its global regulatory landscape. Indian J Med Res 2025; 161:113-119. [PMID: 40257135 PMCID: PMC12010788 DOI: 10.25259/ijmr_818_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/24/2025] [Indexed: 04/22/2025] Open
Abstract
For recurrent Clostridioides difficile infection (rCDI), faecal microbiota transplantation (FMT) is a known and useful treatment that involves introducing faeces from a healthy individual into the digestive tract of a diseased person. Clostridioides difficile is a substantial global health burden due to its high death rate in elderly populations and its ability to produce colitis and diarrhoea. Despite being used since millennia, FMT has recently become more well-known and two FMT products, namely Vowst and Rebyota also received FDA approval. Different nations address regulation in different ways. For instance, FMT is regulated as a drug in the US but is classified as a medicinal product in the UK. The regulatory frameworks among various European countries also vary; a working group, citing FMT as a transplant product, has requested for complete regulation. There are other classifications as well; in Australia, FMT is categorised as a biologic by the Therapeutic Goods Administration. Research indicates that FMT is beneficial in various illnesses, apart from CDI, due to its impact on the gut flora. Challenges include insufficient FMT product characterisation, ethical concerns, and limited hospital accessibility. There are still issues with data accessibility, security, and privacy, especially considering FMT's commercialisation. The official FMT recommendation for recurrent CDI is emphasised from the perspective of public health, with the argument that early implementation could limit antibiotic overuse and prevent antibiotic resistance. Initiatives like the Universal Stool Bank concept aim to streamline donor selection and distribution procedures to minimise operational restrictions.
Collapse
Affiliation(s)
- Isha Deepti
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bijaya Chettri
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjali Mehra
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ann Merin Pinheiro
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ramya Ravi
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Liang J, Lin X, Liao X, Chen X, Zhou Y, Zhang L, Qin Y, Meng H, Feng Z. Global bibliometric analysis of traditional Chinese medicine regulating gut microbiota in the treatment of diabetes from 2004 to 2024. Front Pharmacol 2025; 16:1533984. [PMID: 39917613 PMCID: PMC11799270 DOI: 10.3389/fphar.2025.1533984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Objectives The therapeutic efficacy of Traditional Chinese Medicine (TCM) in modulating gut microbiota for diabetes treatment has garnered increasing scholarly attention. This study aims to meticulously examine current research trajectories and focal areas from 2004 to 2024, providing a foundational framework for future inquiries. Methods A comprehensive search of documents published between 2004 and 2024 was conducted using the Web of Science database. The resulting data were analyzed and visualized using R software, VOSviewer, and CiteSpace. Results The study included a total of 751 documents. From 2004 to 2022, the number of annual publications showed a continuous upward trend (2004: n = 1 to 2022: n = 159), and the number of publications in 2023 (n = 141) decreased slightly from the previous year. China emerged as the leading country in terms of article publications (n = 430). Additionally, the United States played a prominent role in international research collaborations. Frontiers in Pharmacology (n = 31) was the most frequently published journal, while Nature (n = 1,147) achieved the highest citation count. Key identified keywords included obesity, insulin resistance, inflammation, and oxidative stress. Conclusion Three key research focuses in this domain include: the therapeutic effects of active constituents in TCM on diabetes via gut microbiota modulation, the underlying mechanisms through which TCM influences gut microbiota in diabetes management, and the targeted regulation of specific gut bacterial populations by TCM in the treatment of diabetes.
Collapse
Affiliation(s)
- Jieling Liang
- Department of Pharmacy, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Xiaojuan Lin
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Liao
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xi Chen
- Department of Pharmacy, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Ying Zhou
- Department of Pharmacy, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Lin Zhang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunyun Qin
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haoru Meng
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhongwen Feng
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
5
|
Ciernikova S, Sevcikova A, Novisedlakova M, Mego M. Insights into the Relationship Between the Gut Microbiome and Immune Checkpoint Inhibitors in Solid Tumors. Cancers (Basel) 2024; 16:4271. [PMID: 39766170 PMCID: PMC11674129 DOI: 10.3390/cancers16244271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy with immune checkpoint inhibitors represents a revolutionary approach to the treatment of solid tumors, including malignant melanoma, lung cancer, and gastrointestinal malignancies. Anti-CTLA-4 and anti-PD-1/PDL-1 therapies provide prolonged survival for cancer patients, but their efficacy and safety are highly variable. This review focuses on the crucial role of the gut microbiome in modulating the efficacy and toxicity of immune checkpoint blockade. Studies suggest that the composition of the gut microbiome may influence the response to immunotherapy, with specific bacterial strains able to promote an anti-tumor immune response. On the other hand, dysbiosis may increase the risk of adverse effects, such as immune-mediated colitis. Interventions aimed at modulating the microbiome, including the use of probiotics, prebiotics, fecal microbial transplantation, or dietary modifications, represent promising strategies to increase treatment efficacy and reduce toxicity. The combination of immunotherapy with the microbiome-based strategy opens up new possibilities for personalized treatment. In addition, factors such as physical activity and nutritional supplementation may indirectly influence the gut ecosystem and consequently improve treatment outcomes in refractory patients, leading to enhanced patient responses and prolonged survival.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Maria Novisedlakova
- Department of Oncology, Hospital Bory, Ivana Bukovčana 6118, 841 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| |
Collapse
|
6
|
Puca P, Del Gaudio A, Becherucci G, Sacchetti F, Sofo L, Lopetuso LR, Papa A, Cammarota G, Scaldaferri F. Diet and Microbiota Modulation for Chronic Pouchitis: Evidence, Challenges, and Opportunities. Nutrients 2024; 16:4337. [PMID: 39770958 PMCID: PMC11678908 DOI: 10.3390/nu16244337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic pouchitis occurs in about 50% of patients undergoing a restorative proctocolectomy for ulcerative colitis. This affection represents a significant therapeutic challenge, particularly for symptomatic patients who do not respond to antibiotic treatments and biologic therapies. Several dietary approaches, including low FODMAP diets and the Mediterranean diet, have shown promising results in improving symptoms and disease burden. The rationale for dietary intervention lies in the reduction in inflammation and modulation of gut microbiota. However, conflicting results and methodological heterogeneity jeopardize the transition of these approaches from the field of research to clinical practice. Together with a nutritional approach, innovative methods of microbiota modulation, including probiotics and fecal microbiota transplantation, are emerging as safe and effective strategies in managing chronic pouchitis. This narrative review analyzes recent advancements in nutritional therapies and microbiota modulation as innovative and complementary approaches for managing chronic pouchitis. After examining microbiota modulation strategies, specifically the effectiveness of probiotics, prebiotics, and fecal microbiota transplantation in restoring microbial diversity and their potential role in alleviating symptoms, the review assesses the available clinical evidence concerning dietary interventions and their impact on gut microbiota. A comprehensive understanding of interventions aimed at modulating the microbiota is crucial for enhancing the effectiveness of conventional therapies. Such strategies may lead to significant improvements in patients' quality of life and their perception of the disease. However, the variability in microbiota composition, the use of restrictive diets, and the lack of standardized methods for evaluating these interventions remain significant challenges. Future research is essential to improve our understanding of the underlying mechanisms and optimize clinical application.
Collapse
Affiliation(s)
- Pierluigi Puca
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.P.); (L.R.L.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.D.G.); (A.P.); (G.C.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.D.G.); (A.P.); (G.C.)
| | - Guia Becherucci
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.P.); (L.R.L.); (F.S.)
| | - Franco Sacchetti
- Abdominal Surgery Unit, Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (F.S.); (L.S.)
| | - Luigi Sofo
- Abdominal Surgery Unit, Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (F.S.); (L.S.)
| | - Loris Riccardo Lopetuso
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.P.); (L.R.L.); (F.S.)
| | - Alfredo Papa
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.D.G.); (A.P.); (G.C.)
- Abdominal Surgery Unit, Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (F.S.); (L.S.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.D.G.); (A.P.); (G.C.)
- Abdominal Surgery Unit, Department of Gastroenterological, Endocrine-Metabolic and Nephro-Urological Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (F.S.); (L.S.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.P.); (L.R.L.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.D.G.); (A.P.); (G.C.)
| |
Collapse
|
7
|
Zhang Y, Wang H, Sang Y, Liu M, Wang Q, Yang H, Li X. Gut microbiota in health and disease: advances and future prospects. MedComm (Beijing) 2024; 5:e70012. [PMID: 39568773 PMCID: PMC11577303 DOI: 10.1002/mco2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
The gut microbiota plays a critical role in maintaining human health, influencing a wide range of physiological processes, including immune regulation, metabolism, and neurological function. Recent studies have shown that imbalances in gut microbiota composition can contribute to the onset and progression of various diseases, such as metabolic disorders (e.g., obesity and diabetes) and neurodegenerative conditions (e.g., Alzheimer's and Parkinson's). These conditions are often accompanied by chronic inflammation and dysregulated immune responses, which are closely linked to specific forms of cell death, including pyroptosis and ferroptosis. Pathogenic bacteria in the gut can trigger these cell death pathways through toxin release, while probiotics have been found to mitigate these effects by modulating immune responses. Despite these insights, the precise mechanisms through which the gut microbiota influences these diseases remain insufficiently understood. This review consolidates recent findings on the impact of gut microbiota in these immune-mediated and inflammation-associated conditions. It also identifies gaps in current research and explores the potential of advanced technologies, such as organ-on-chip models and the microbiome-gut-organ axis, for deepening our understanding. Emerging tools, including single-bacterium omics and spatial metabolomics, are discussed for their promise in elucidating the microbiota's role in disease development.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| | - Hong Wang
- School of Traditional Chinese Medicine Southern Medical University Guangzhou China
| | - Yiwei Sang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| | - Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| | - Qing Wang
- School of Life Sciences Beijing University of Chinese Medicine Beijing China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs China Academy of Chinese Medical Sciences Beijing China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| |
Collapse
|
8
|
Ma H, Mueed A, Ma Y, Ibrahim M, Su L, Wang Q. Fecal Microbiota Transplantation Activity of Floccularia luteovirens Polysaccharides and Their Protective Effect on Cyclophosphamide-Induced Immunosuppression and Intestinal Injury in Mice. Foods 2024; 13:3881. [PMID: 39682952 DOI: 10.3390/foods13233881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Floccularia luteovirens polysaccharides (FLP1s) have potential biological activities. Our previous study showed that FLP1s positively regulated gut immunity and microbiota. However, it is still unclear whether FLP1s mediate gut microbiota in immunosuppressed mice. This research aims to explore the relationship between FLP1-mediated gut microbes and intestinal immunity in immunosuppressed mice through fecal microbiota transplantation (FMT). The results demonstrated that FLP1s exhibited prebiotic and anti-immunosuppressive effects on CTX-induced immunosuppressed mice. FFLP1 treatment (microbiota transplantation from the fecal sample) remarkably elevated the production of sIgA and secretion of the anti-inflammatory cytokines IL-4, TNF-α, and IFN-γ in the intestine of CTX-treated mice, inducing activation of the MAPK pathway. Moreover, FFLP1s mitigated oxidative stress by activating the Nrf2/Keap1 signaling pathway and strengthened the intestinal barrier function by upregulating the expression level of tight junction proteins (occludin, claudin-1, MUC-2, and ZO-1). Furthermore, FFPL1s restored gut dysbiosis in CTX-treated immunosuppressed mice by increasing the abundance of Alloprevotella, Lachnospiraceae, and Bacteroides. They also modified the composition of fecal metabolites, leading to enhanced regulation of lipolysis in adipocytes, the cGMP-PKG pathway, the Rap1 signaling pathway, and ovarian steroidogenesis, as indicated by KEGG pathway analysis. These findings indicate that FLP1s could modulate the response of the intestinal immune system through regulation of the gut microbiota, thus promoting immune activation in CTX-treated immunosuppressed mice. FLP1s can serve as a natural protective agent against CTX-induced immune injury.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanxu Ma
- Jilin Sericulture Science Research Institute, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
9
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. The gut-brain-metabolic axis: exploring the role of microbiota in insulin resistance and cognitive function. Front Microbiol 2024; 15:1463958. [PMID: 39659426 PMCID: PMC11628546 DOI: 10.3389/fmicb.2024.1463958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
The gut-brain-metabolic axis has emerged as a critical area of research, highlighting the intricate connections between the gut microbiome, metabolic processes, and cognitive function. This review article delves into the complex interplay between these interconnected systems, exploring their role in the development of insulin resistance and cognitive decline. The article emphasizes the pivotal influence of the gut microbiota on central nervous system (CNS) function, demonstrating how microbial colonization can program the hypothalamic-pituitary-adrenal (HPA) axis for stress response in mice. It further elucidates the mechanisms by which gut microbial carbohydrate metabolism contributes to insulin resistance, a key factor in the pathogenesis of metabolic disorders and cognitive impairment. Notably, the review highlights the therapeutic potential of targeting the gut-brain-metabolic axis through various interventions, such as dietary modifications, probiotics, prebiotics, and fecal microbiota transplantation (FMT). These approaches have shown promising results in improving insulin sensitivity and cognitive function in both animal models and human studies. The article also emphasizes the need for further research to elucidate the specific microbial species and metabolites involved in modulating the gut-brain axis, as well as the long-term effects and safety of these therapeutic interventions. Advances in metagenomics, metabolomics, and bioinformatics are expected to provide deeper insights into the complex interactions within the gut microbiota and their impact on host health. Overall, this comprehensive review underscores the significance of the gut-brain-metabolic axis in the pathogenesis and treatment of metabolic and cognitive disorders, offering a promising avenue for the development of novel therapeutic strategies targeting this intricate system.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Alireza Afshar
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
10
|
Brusnic O, Onisor D, Boicean A, Hasegan A, Ichim C, Guzun A, Chicea R, Todor SB, Vintila BI, Anderco P, Porr C, Dura H, Fleaca SR, Cristian AN. Fecal Microbiota Transplantation: Insights into Colon Carcinogenesis and Immune Regulation. J Clin Med 2024; 13:6578. [PMID: 39518717 PMCID: PMC11547077 DOI: 10.3390/jcm13216578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) constitutes a significant global health challenge, with recent studies underscoring the pivotal role of the gut microbiome in its pathogenesis and progression. Fecal microbiota transplantation (FMT) has emerged as a compelling therapeutic approach, offering the potential to modulate microbial composition and optimize treatment outcomes. Research suggests that specific bacterial strains are closely linked to CRC, influencing both its clinical management and therapeutic interventions. Moreover, the gut microbiome's impact on immunotherapy responsiveness heralds new avenues for personalized medicine. Despite the promise of FMT, safety concerns, particularly in immunocompromised individuals, remain a critical issue. Clinical outcomes vary widely, influenced by genetic predispositions and the specific transplantation methodologies employed. Additionally, rigorous donor selection and screening protocols are paramount to minimize risks and maximize therapeutic efficacy. The current body of literature advocates for the establishment of standardized protocols and further clinical trials to substantiate FMT's role in CRC management. As our understanding of the microbiome deepens, FMT is poised to become a cornerstone in CRC treatment, underscoring the imperative for continued research and clinical validation.
Collapse
Affiliation(s)
- Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (O.B.); (D.O.)
| | - Danusia Onisor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (O.B.); (D.O.)
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Andreea Guzun
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Radu Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Bogdan Ioan Vintila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Corina Porr
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Adrian Nicolae Cristian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| |
Collapse
|
11
|
Karimi M, Shirsalimi N, Hashempour Z, Salehi Omran H, Sedighi E, Beigi F, Mortezazadeh M. Safety and efficacy of fecal microbiota transplantation (FMT) as a modern adjuvant therapy in various diseases and disorders: a comprehensive literature review. Front Immunol 2024; 15:1439176. [PMID: 39391303 PMCID: PMC11464302 DOI: 10.3389/fimmu.2024.1439176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The human gastrointestinal (GI) tract microbiome is a complex and all-encompassing ecological system of trillions of microorganisms. It plays a vital role in digestion, disease prevention, and overall health. When this delicate balance is disrupted, it can lead to various health issues. Fecal microbiota transplantation (FMT) is an emerging therapeutic intervention used as an adjuvant therapy for many diseases, particularly those with dysbiosis as their underlying cause. Its goal is to restore this balance by transferring fecal material from healthy donors to the recipients. FMT has an impressive reported cure rate between 80% and 90% and has become a favored treatment for many diseases. While FMT may have generally mild to moderate transient adverse effects, rare severe complications underscore the importance of rigorous donor screening and standardized administration. FMT has enormous potential as a practical therapeutic approach; however, additional research is required to further determine its potential for clinical utilization, as well as its safety and efficiency in different patient populations. This comprehensive literature review offers increased confidence in the safety and effectiveness of FMT for several diseases affecting the intestines and other systems, including diabetes, obesity, inflammatory and autoimmune illness, and other conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Zahra Hashempour
- School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Hossein Salehi Omran
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMUS), Tehran, Iran
| | - Eshagh Sedighi
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| | - Farzan Beigi
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Masoud Mortezazadeh
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
12
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
13
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Gulumbe BH, Abdulrahim A. Pushing the frontiers in the fight against antimicrobial resistance: the potential of fecal and maggot therapies. Future Sci OA 2023; 9:FSO899. [PMID: 37753364 PMCID: PMC10518815 DOI: 10.2144/fsoa-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) warrants innovative therapeutic strategies. Fecal microbiota transplantation (FMT) and maggot debridement therapy (MDT) represent paradigm-shifting approaches, leveraging biological systems to mitigate AMR. FMT restores a healthy gut microbiome, providing a biotherapeutic counter to pathogenic bacteria, thereby reducing reliance on traditional antibiotics. Conversely, MDT, a form of bio-debridement, utilizes the antimicrobial secretions of maggots to cleanse wounds and eliminate resistant bacteria. Despite the promise these therapies hold, their broader clinical adoption faces multifaceted challenges including the need for rigorous scientific substantiation, standardized protocols, deepened understanding of mechanisms of action, and surmounting regulatory and public acceptance barriers. However, their potential integration with precision medicine could revolutionize disease management, particularly with antibiotic-resistant infections.
Collapse
Affiliation(s)
- Bashar Haruna Gulumbe
- Department of Microbiology, Faculty of Science, Federal University, Kalgo, Birnin Kebbi, PMB, 1157, Nigeria
| | - Abdulrakib Abdulrahim
- Department of Microbiology, Faculty of Science, Federal University, Kalgo, Birnin Kebbi, PMB, 1157, Nigeria
| |
Collapse
|
15
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
16
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
17
|
Santos FP, Carvalhos CA, Figueiredo-Dias M. New Insights into Photobiomodulation of the Vaginal Microbiome-A Critical Review. Int J Mol Sci 2023; 24:13507. [PMID: 37686314 PMCID: PMC10487748 DOI: 10.3390/ijms241713507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The development of new technologies such as sequencing has greatly enhanced our understanding of the human microbiome. The interactions between the human microbiome and the development of several diseases have been the subject of recent research. In-depth knowledge about the vaginal microbiome (VMB) has shown that dysbiosis is closely related to the development of gynecologic and obstetric disorders. To date, the progress in treating or modulating the VMB has lagged far behind research efforts. Photobiomodulation (PBM) uses low levels of light, usually red or near-infrared, to treat a diversity of conditions. Several studies have demonstrated that PBM can control the microbiome and improve the activity of the immune system. In recent years, increasing attention has been paid to the microbiome, mostly to the gut microbiome and its connections with many diseases, such as metabolic disorders, obesity, cardiovascular disorders, autoimmunity, and neurological disorders. The applicability of PBM therapeutics to treat gut dysbiosis has been studied, with promising results. The possible cellular and molecular effects of PBM on the vaginal microbiome constitute a theoretical and promising field that is starting to take its first steps. In this review, we will discuss the potential mechanisms and effects of photobiomodulation in the VMB.
Collapse
Affiliation(s)
- Fernanda P. Santos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3001-301 Coimbra, Portugal
| | - Carlota A. Carvalhos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3001-301 Coimbra, Portugal
| |
Collapse
|
18
|
Demirci M, Saribas AS, Siadat SD, Kocazeybek BS. Editorial: Blood microbiota in health and disease. Front Cell Infect Microbiol 2023; 13:1187247. [PMID: 37033492 PMCID: PMC10073664 DOI: 10.3389/fcimb.2023.1187247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Mehmet Demirci
- Department of Medical Microbiology, Faculty of Medicine, Kirklareli University, Kirklareli, Türkiye
| | - A. Suat Saribas
- Department of Medical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bekir Sami Kocazeybek
- Department of Medical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
19
|
A Taxonomy-Agnostic Approach to Targeted Microbiome Therapeutics-Leveraging Principles of Systems Biology. Pathogens 2023; 12:pathogens12020238. [PMID: 36839510 PMCID: PMC9959781 DOI: 10.3390/pathogens12020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The study of human microbiomes has yielded insights into basic science, and applied therapeutics are emerging. However, conflicting definitions of what microbiomes are and how they affect the health of the "host" are less understood. A major impediment towards systematic design, discovery, and implementation of targeted microbiome therapeutics is the continued reliance on taxonomic indicators to define microbiomes in health and disease. Such reliance often confounds analyses, potentially suggesting associations where there are none, and conversely failing to identify significant, causal relationships. This review article discusses recent discoveries pointing towards a molecular understanding of microbiome "dysbiosis" and away from a purely taxonomic approach. We highlight the growing role of systems biological principles in the complex interrelationships between the gut microbiome and host cells, and review current approaches commonly used in targeted microbiome therapeutics, including fecal microbial transplant, bacteriophage therapies, and the use of metabolic toxins to selectively eliminate specific taxa from dysbiotic microbiomes. These approaches, however, remain wholly or partially dependent on the bacterial taxa involved in dysbiosis, and therefore may not capitalize fully on many therapeutic opportunities presented at the bioactive molecular level. New technologies capable of addressing microbiome-associated diseases as molecular problems, if solved, will open possibilities of new classes and categories of targeted microbiome therapeutics aimed, in principle, at all dysbiosis-driven disorders.
Collapse
|
20
|
Wang L, Zhang P, Chen J, Li C, Tian Y, Xu F. Prebiotic properties of the polysaccharide from Rosa roxburghii Tratt fruit and its protective effects in high-fat diet-induced intestinal barrier dysfunction: A fecal microbiota transplantation study. Food Res Int 2023; 164:112400. [PMID: 36737985 DOI: 10.1016/j.foodres.2022.112400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Polysaccharide from Rosa roxburghii Tratt fruit (RTFP) ameliorates high-fat diet (HFD)-induced colitis in mice. However, it is still unknown whether the gut microbiota can mediate the anti-colitis effects of RTFP in mice. This research aims to investigate the role of gut microbes in modulating RTFP in colitis mice through fecal microbiota transplantation (FMT). The findings demonstrated that RTFP exhibited prebiotic effects on HFD-induced colitis mice. After FMT treatment (transplatation of the microbiota from the fecal sample to each recipient daily), the fecal microbiota of RTFP-treated donor mice remarkably alleviated colitis-related symptoms (e.g., colonic inflammation, loss of body weight, gut microbiota dysbiosis, and loss of barrier integrity) and upregulated the expression of tight junction proteins compared to the HFD-treated donor mice. Overall, RTFP can reduce the severity of HFD-induced colitis by regulating gut microbiota.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Pan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingpeng Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fei Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|