1
|
Li Y, Wu J, Ye P, Cai Y, Shao M, Zhang T, Guo Y, Zeng S, Pathak JL. Decellularized Extracellular Matrix Scaffolds: Recent Advances and Emerging Strategies in Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7372-7385. [PMID: 39492720 DOI: 10.1021/acsbiomaterials.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.
Collapse
Affiliation(s)
- Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Peilin Ye
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai 519040, P. R. China
| | - Yilin Cai
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| |
Collapse
|
2
|
Charalampopoulou A, Barcellini A, Peloso A, Vanoli A, Cesari S, Icaro Cornaglia A, Bistika M, Croce S, Cobianchi L, Ivaldi GB, Locati LD, Magro G, Tabarelli de Fatis P, Pullia MG, Orlandi E, Facoetti A. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers (Basel) 2024; 16:2582. [PMID: 39061220 PMCID: PMC11274431 DOI: 10.3390/cancers16142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
- Hadron Academy PhD Course, School for Advanced Studies (IUSS), 27100 Pavia, Italy
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
| | - Andrea Peloso
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Cesari
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Unit of Histology and Embryology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Margarita Bistika
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Collegium Medicum, University of Social Sciences, 90-419 Łodz, Poland
| | | | - Laura Deborah Locati
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Medical Oncology Unit, Istituti Clinici Scientific Maugeri IRCCS, 27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, 27100 Pavia, Italy;
| | | | - Marco Giuseppe Pullia
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angelica Facoetti
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
| |
Collapse
|
3
|
Wang Y, Wu N, Li J, Zhou D, Liang J, Cao Q, Guan Z, Xu Y, Jiang N. YAP1 Regulates the YAP1/AR/PSA Axis through Autophagy in Castration-Resistant Prostate Cancer and Mediates T-Cell Immune and Inflammatory Cytokine Infiltration. Biomedicines 2024; 12:661. [PMID: 38540274 PMCID: PMC10967749 DOI: 10.3390/biomedicines12030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of castration-resistant prostate cancer (CRPC) following androgen deprivation therapy (ADT) is associated with increased malignancy and limited treatment options. This study aims to investigate potential connections between immune cell infiltration and inflammatory cytokines with the YAP1/AR/PSA axis by exploring their interactions with autophagy. Our research reveals heightened levels of Yes-associated protein 1 (YAP1) expression in CRPC tissues compared with tissues from androgen-dependent prostate cancer (ADPC) and benign prostate hyperplasia (BPH). Additionally, a correlation was observed between YAP1 and PSA expressions in CRPC tissues, suggesting that YAP1 may exert a regulatory influence on PSA expression within CRPC. Enhanced YAP1 expression in C4-2 cells resulted in the upregulation of androgen receptor (AR) nuclear translocation and intracellular prostate-specific antigen (PSA) levels. Conversely, the suppression of YAP1 led to a decrease in PSA expression, suggesting that YAP1 may positively regulate the PSA in castration-resistant prostate cancer (CRPC) by facilitating AR nuclear import. The modulation of the autophagy activity exerts a significant impact on the expression levels of YAP1, the AR, and the PSA. Moreover, recent advancements in immunity and inflammation studies present promising avenues for potential therapies targeting prostate cancer (PC).
Collapse
Affiliation(s)
- Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Zhaokai Guan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Yangyang Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
4
|
Di Gravina GM, Bari E, Croce S, Scocozza F, Pisani S, Conti B, Avanzini MA, Auricchio F, Cobianchi L, Torre ML, Conti M. Design and development of a hepatic lyo-dECM powder as a biomimetic component for 3D-printable hybrid hydrogels. Biomed Mater 2023; 19:015005. [PMID: 37992318 DOI: 10.1088/1748-605x/ad0ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Bioprinting offers new opportunities to obtain reliable 3Din vitromodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels. To this aim, the powder was first characterized in terms of cytocompatibility on human and porcine mesenchymal stem cells (MSCs), and the optimal powder concentration (i.e. 3.75 mg ml-1) to use in the hydrogel formulation was identified. Moreover, its non-immunogenicity and capacity to reactivate the elastase enzyme potency was proved. Afterward, as a proof-of-concept, the powder was added to a sodium alginate/gelatin blend, and the so-defined multi-component hydrogel was studied from a rheological point of view, demonstrating that adding the lyo-dECM powder at the selected concentration did not alter the viscoelastic properties of the original material. Then, a printing assessment was performed with the support of computational simulations, which were useful to definea priorithe hydrogel printing parameters as window of printability and its post-printing mechanical collapse. Finally, the proposed multi-component hydrogel was bioprinted with cells inside, and its post-printing cell viability for up to 7 d was successfully demonstrated.
Collapse
Affiliation(s)
- Giulia M Di Gravina
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stefania Croce
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Silvia Pisani
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Maria A Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- PharmaExceed s.r.l., Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|