1
|
Zhuang W, Park M, Jeong J, Kim HR, Jang Y, Seo MS, An JR, Park H, Jung WK, Choi IW, Park WS. The sodium-glucose cotransporter 2 inhibitor tofogliflozin induces vasodilation of rabbit femoral artery by activating Kv channels, the SERCA pump, and the sGC/cGMP pathway. Eur J Pharmacol 2025; 996:177595. [PMID: 40189081 DOI: 10.1016/j.ejphar.2025.177595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Tofogliflozin is a sodium-glucose cotransporter 2 inhibitor widely used to treat type 2 diabetes mellitus, but it also exhibits cardio-protective effects. This study investigated the vasodilatory action of tofogliflozin using rabbit femoral artery rings pre-contracted with phenylephrine (1 μM). The results showed the concentration-dependent induction of vasodilation by tofogliflozin, a response that remained unchanged following endothelial removal, pretreatment with the nitric oxide synthase inhibitor L-NAME (100 μM), or the inhibition of low- and intermediate-conductance Ca2+-activated K+ channels using apamin (1 μM) in combination with TRAM-34 (1 μM). Furthermore, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-AP (3 mM) reduced the vasodilatory effects of tofogliflozin whereas pretreatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 μM) or the large-conductance Ca2+-activated K+ channel inhibitor paxilline (1 μM) did not. Notably, our findings indicated that Kv7.X, rather than Kv1.5 or Kv2.1, is the primary Kv subtype involved in tofogliflozin-induced vasodilation. The vasodilatory effects of tofogliflozin were also significantly inhibited in femoral arterial rings pretreated with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 μM) and cyclopiazonic acid (10 μM). Tofogliflozin-induced vasodilation was unaltered in arterial rings exposed to the adenylyl cyclase inhibitor SQ 22536 (50 μM), the protein kinase A (PKA) inhibitor KT 5720 (1 μM), and the protein kinase G inhibitor KT 5823 (1 μM) whereas it was effectively reduced by the soluble guanylyl cyclase (sGC) inhibitor ODQ (10 μM). These findings suggest that tofogliflozin-induced vasodilation is mediated by the activation of the SERCA pump, the sGC/cGMP pathway, and Kv channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - YeEun Jang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Jin Ryeol An
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
3
|
Paraskevaidis I, Kourek C, Tsougos E. Chronic Coronary Artery Disease: Wall Disease vs. Lumenopathy. Biomolecules 2025; 15:201. [PMID: 40001504 PMCID: PMC11852618 DOI: 10.3390/biom15020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Acute and chronic coronary artery disease (CAD) are interconnected, representing two facets of the same condition. Chronic CAD exhibits a dynamic nature, manifesting as stable or acute ischemia, or both. Myocardial ischemia can be transient and reversible. The genesis of CAD involves diverse anatomical and functional mechanisms, including endothelial dysfunction, arteriolar remodeling, capillary rarefaction, and perivascular fibrosis, though no single factor explains its heterogeneity. Chronic CAD is often stable but may present as symptomatic or asymptomatic (e.g., in diabetes) and affect various coronary compartments (epicardial or microcirculation). This complexity necessitates a reappraisal of our approach, as pathophysiological mechanisms vary and often overlap. A comprehensive exploration of these mechanisms using advanced diagnostic techniques can aid in identifying the dynamic processes underlying CAD. The disease may present as obstructive or non-obstructive, stable or unstable, underscoring its diversity. The primary source of CAD lies in the arterial wall, emphasizing the need for research on its components, such as the endothelium and vascular smooth muscle cells, and factors disrupting arterial homeostasis. Shifting focus from arterial luminal status to the arterial wall can provide insights into the genesis of atheromatous plaques, enabling earlier interventions to prevent their development and progression.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
4
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Sgromo C, Cucci A, Venturin G, Follenzi A, Olgasi C. Bridging the Gap: Endothelial Dysfunction and the Role of iPSC-Derived Endothelial Cells in Disease Modeling. Int J Mol Sci 2024; 25:13275. [PMID: 39769040 PMCID: PMC11678083 DOI: 10.3390/ijms252413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Endothelial cells (ECs) are crucial for vascular health, regulating blood flow, nutrient exchange, and modulating immune responses and inflammation. The impairment of these processes causes the endothelial dysfunction (ED) characterized by oxidative stress, inflammation, vascular permeability, and extracellular matrix remodeling. While primary ECs have been widely used to study ED in vitro, their limitations-such as short lifespan and donor variability-pose challenges. In this context, induced iECs derived from induced pluripotent stem cells offer an innovative solution, providing an unlimited source of ECs to explore disease-specific features of ED. Recent advancements in 3D models and microfluidic systems have enhanced the physiological relevance of iEC-based models by better mimicking the vascular microenvironment. These innovations bridge the gap between understanding ED mechanisms and drug developing and screening to prevent or treat ED. This review highlights the current state of iEC technology as a model to study ED in vascular and non-vascular disorders, including diabetes, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Sgromo
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Giorgia Venturin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Cristina Olgasi
- Department of Translational Medicine, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
6
|
Zinkevich NS, Drachuk K, Zhang DX. Prolonged L-NAME exposure changes the vasodilator factor from NO to H 2O 2 in human arterioles in response to A23187. Vascul Pharmacol 2024; 157:107440. [PMID: 39537001 PMCID: PMC11624973 DOI: 10.1016/j.vph.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The Ca2+ ionophore A23187 induces endothelium-dependent and non-receptor-mediated vasodilation in human adipose arterioles (HAAs). The purpose of this study was to determine the mechanism of A23187-induced dilation in HAAs from patients with and without coronary artery disease (CAD). HAAs were freshly isolated from adipose tissues obtained from non-CAD (n = 25) and CAD (n = 14) patients, and vascular reactivity was studied by videomicroscopy. No difference in baseline dose response to A23187 was observed between non-CAD and CAD subjects. However, acute (30 min) incubation with N(omega)-nitro-l-arginine methyl ester (L-NAME), NO synthase inhibitor strongly reduced A23187-induced dilation in non-CAD arterioles, while catalase, an H2O2 scavenger, largely abolished dilation in CAD. Surprising, prolonged (90 min) incubation with L-NAME restored A23187 response in non-CAD subjects, which was subsequently inhibited by catalase. The action of prolonged L-NAME exposure was not reversible after washing with Krebs while the effect of acute L-NAME exposure was largely reversible. To further determine the role of mitochondria-derived ROS in A23187-induced dilation, arterioles were treated with rotenone, an inhibitor of complex I of the electron transport chain. Rotenone abolished A23187 response in CAD patients and in non-CAD arterioles after prolonged L-NAME, but not in non-CAD controls. These data indicate that NO contributes to A23187-induced dilation in HAAs from non-CAD patients and H2O2 contributes to the dilation in CAD patients. Prolonged L-NAME exposure induces a NO-H2O2 switch in the mechanism of dilation in non-CAD subjects. Moreover, the effect of prolonged L-NAME exposure is not readily reversible, while the action of acute L-NAME exposure is reversible.
Collapse
Affiliation(s)
- Natalya S Zinkevich
- College of Health, Science and Technology, School of Integrated Sciences, Sustainability, and Public Health, Biology, University of Illinois Springfield, Springfield, IL 62703-5407, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Kostiantyn Drachuk
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
8
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
9
|
Ciarambino T, Crispino P, Minervini G, Giordano M. Role of Helicobacter pylori Infection in Pathogenesis, Evolution, and Complication of Atherosclerotic Plaque. Biomedicines 2024; 12:400. [PMID: 38398002 PMCID: PMC10886498 DOI: 10.3390/biomedicines12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of atherosclerosis focuses almost exclusively on the reduction of plasma cholesterol levels. An important role in the genesis and evolution of atherosclerosis is played by chronic inflammation in promoting thrombosis phenomena after atheroma rupture. This review aims to take stock of the knowledge so far accumulated on the role of endemic HP infection in atherosclerosis. The studies produced so far have demonstrated a causal relationship between Helicobacter pylori (HP) and CVD. In a previous study, we demonstrated in HP-positive patients that thrombin and plasma fragment 1 + 2 production was proportionally related to tumor necrosis factor-alpha levels and that eradication of the infection resulted in a reduction of inflammation. At the end of our review, we can state that HP slightly affects the risk of CVD, particularly if the infection is associated with cytotoxic damage, and HP screening could have a clinically significant role in patients with a high risk of CVD. Considering the high prevalence of HP infection, an infection screening could be of great clinical utility in patients at high risk of CVD.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy;
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Naples, Italy;
| |
Collapse
|
10
|
Shin S, Park J, Choi HY, Bu Y, Lee K. Sakuranetin as a Potential Regulator of Blood Pressure in Spontaneously Hypertensive Rats by Promoting Vasorelaxation through Calcium Channel Blockade. Biomedicines 2024; 12:346. [PMID: 38397948 PMCID: PMC10887318 DOI: 10.3390/biomedicines12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Natural compounds, known for diverse pharmacological properties, have attracted attention as potential sources for hypertension treatment. Previous studies have revealed the hypotensive effect and vascular relaxation of prunetin, a natural compound derived from Prunus yedoensis. However, the potential blood pressure-lowering and vasorelaxant effects of sakuranetin, another representative compound found in plants belonging to the genus Prunus, have remained unexplored. We aimed to fill this gap by investigating the hypotensive and vasorelaxant effects of sakuranetin in rats. Results indicated that sakuranetin, particularly in the sakuranetin 20 mg/kg group, led to significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP) by -14.53 ± 5.64% and -19.83 ± 6.56% at 4 h after administration. In the sakuranetin 50 mg/kg group, the SBP and DBP decreased by -13.27 ± 6.86% and -16.62 ± 10.01% at 2 h and by -21.61 ± 4.49% and -30.45 ± 5.21% at 4 h after administration. In addition, we identified the vasorelaxant effects of sakuranetin, attributing its mechanisms to the inhibition of calcium influx and the modulation of angiotensin II. Considering its hypotensive and vasorelaxant effects, sakuranetin could potentially serve as an antihypertensive agent. However, further research is required to evaluate the safety and long-term efficacy.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Cai M, Zhao D, Han X, Han S, Zhang W, Zang Z, Gai C, Rong R, Gao T. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front Immunol 2023; 14:1271051. [PMID: 37822930 PMCID: PMC10562567 DOI: 10.3389/fimmu.2023.1271051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
Perivascular adipose tissue and the vessel wall are connected through intricate bidirectional paracrine and vascular secretory signaling pathways. The secretion of inflammatory factors and oxidative products by the vessel wall in the diseased segment has the ability to influence the phenotype of perivascular adipocytes. Additionally, the secretion of adipokines by perivascular adipose tissue exacerbates the inflammatory response in the diseased vessel wall. Therefore, quantitative and qualitative studies of perivascular adipose tissue are of great value in the context of vascular inflammation and may provide a reference for the assessment of cardiovascular ischemic disease.
Collapse
Affiliation(s)
- Meichao Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongsheng Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuang Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhennan Zang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenchen Gai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Dyńka D, Kowalcze K, Charuta A, Paziewska A. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023; 15:3368. [PMID: 37571305 PMCID: PMC10421332 DOI: 10.3390/nu15153368] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The most common and increasing causes of death worldwide are cardiovascular diseases (CVD). Taking into account the fact that diet is a key factor, it is worth exploring this aspect of CVD prevention and therapy. The aim of this article is to assess the potential of the ketogenic diet in the prevention and treatment of CVD. The article is a comprehensive, meticulous analysis of the literature in this area, taking into account the most recent studies currently available. The ketogenic diet has been shown to have a multifaceted effect on the prevention and treatment of CVD. Among other aspects, it has a beneficial effect on the blood lipid profile, even compared to other diets. It shows strong anti-inflammatory and cardioprotective potential, which is due, among other factors, to the anti-inflammatory properties of the state of ketosis, the elimination of simple sugars, the restriction of total carbohydrates and the supply of omega-3 fatty acids. In addition, ketone bodies provide "rescue fuel" for the diseased heart by affecting its metabolism. They also have a beneficial effect on the function of the vascular endothelium, including improving its function and inhibiting premature ageing. The ketogenic diet has a beneficial effect on blood pressure and other CVD risk factors through, among other aspects, weight loss. The evidence cited is often superior to that for standard diets, making it likely that the ketogenic diet shows advantages over other dietary models in the prevention and treatment of cardiovascular diseases. There is a legitimate need for further research in this area.
Collapse
Affiliation(s)
| | | | | | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland; (D.D.); (K.K.); (A.C.)
| |
Collapse
|
13
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|
14
|
Nappi F, Avtaar Singh SS. SARS-CoV-2-Induced Myocarditis: A State-of-the-Art Review. Viruses 2023; 15:916. [PMID: 37112896 PMCID: PMC10145666 DOI: 10.3390/v15040916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
In this review, we investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly cause myocarditis with severe myocardial damage induced by viral particles. A review of the major data published from 2020 to 2022 was performed by consulting the major databases alongside first-hand experiences that emerged from the cardiac biopsies and autopsy examinations of patients who died of SARS-CoV-2 infections. From this study, a significantly large amount of data suggests that the Dallas criteria were met in a residual percentage of patients, demonstrating that SARS-CoV-2 myocarditis was a rare clinical and pathological entity that occurred in a small percentage of subjects. All cases described here were highly selected and subjected to autopsies or endomyocardial biopsies (EMBs). The most important discovery, through the detection of the SARS-CoV-2 genome using the polymerase chain reaction, consisted in the presence of the viral genome in the lung tissue of most of the patients who died from COVID-19. However, the discovery of the SARS-CoV-2 viral genome was a rare event in cardiac tissue from autopsy findings of patients who died of myocarditis It is important to emphasize that myocardial inflammation alone, as promoted by macrophages and T cell infiltrations, can be observed in noninfectious deaths and COVID-19 cases, but the extent of each cause is varied, and in neither case have such findings been reported to support clinically relevant myocarditis. Therefore, in the different infected vs. non-infected samples examined, none of our findings provide a definitive histochemical assessment for the diagnosis of myocarditis in the majority of cases evaluated. We report evidence suggesting an extremely low frequency of viral myocarditis that has also been associated with unclear therapeutic implications. These two key factors strongly point towards the use of an endomyocardial biopsy to irrefutably reach a diagnosis of viral myocarditis in the context of COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
15
|
Shanmugham M, Bellanger S, Leo CH. Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals (Basel) 2023; 16:ph16040504. [PMID: 37111261 PMCID: PMC10142468 DOI: 10.3390/ph16040504] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a biologically active gut microbiome-derived dietary metabolite. Recent studies have shown that high circulating plasma TMAO levels are closely associated with diseases such as atherosclerosis and hypertension, and metabolic disorders such as diabetes and hyperlipidemia, contributing to endothelial dysfunction. There is a growing interest to understand the mechanisms underlying TMAO-induced endothelial dysfunction in cardio-metabolic diseases. Endothelial dysfunction mediated by TMAO is mainly driven by inflammation and oxidative stress, which includes: (1) activation of foam cells; (2) upregulation of cytokines and adhesion molecules; (3) increased production of reactive oxygen species (ROS); (4) platelet hyperreactivity; and (5) reduced vascular tone. In this review, we summarize the potential roles of TMAO in inducing endothelial dysfunction and the mechanisms leading to the pathogenesis and progression of associated disease conditions. We also discuss the potential therapeutic strategies for the treatment of TMAO-induced endothelial dysfunction in cardio-metabolic diseases.
Collapse
Affiliation(s)
- Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Chen Huei Leo
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
- Correspondence: ; Tel.: +65-6434-8213
| |
Collapse
|
16
|
Nappi F, Avtaar Singh SS. Distinctive Signs of Disease as Deterrents for the Endothelial Function: A Systematic Review. Metabolites 2023; 13:430. [PMID: 36984870 PMCID: PMC10057506 DOI: 10.3390/metabo13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Endothelial integrity plays a major role in homeostasis and is responsive to the numerous endogenous factors released. While its functional role in vascular tone is well described, its role in the pathophysiology of cardiovascular disease is of interest as a potential therapeutic target. We performed a systematic review to provide an overview of new therapeutic and diagnostic targets for the treatment of coronary artery disease related to endothelial dysfunction. Databases of PubMed, Ovid's version of MEDLINE, and EMBASE were interrogated with appropriate search terms. Inclusion criteria have been met by 28 studies that were included in the final systematic review. We identified inflammation, pulmonary hypertension, diabetes mellitus and Fabry disease as pathophysiological mechanisms and explored the therapeutic options related to these conditions including medications such as Canakinumab. Endothelial dysfunction has a key role in several different pathophysiological processes which can be targeted for therapeutic options. Ongoing research should be targeted at making the transition to clinical practice. Further research is also needed on understanding the amelioration of endothelial dysfunction with the use of cardiovascular medications.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|