Rao Y, Li J, Xu T, Gao L, Wang W. Gengnianchun formula ameliorates insulin resistance-induced diminished ovarian reserve via the estrogen signaling pathway: evidence from network pharmacology and experimental validation.
J Ovarian Res 2025;
18:51. [PMID:
40069864 PMCID:
PMC11898993 DOI:
10.1186/s13048-025-01632-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND
Diminished ovarian reserve (DOR), a major cause of female infertility, is closely linked to insulin resistance (IR). Traditional Chinese Medicine (TCM) approaches, such as the Gengnianchun (GNC) formula, focus on restoring ovarian function by improving IR and regulating hormonal balance. Despite GNC's demonstrated efficacy, its precise therapeutic mechanisms remain unclear.
OBJECTIVE
This study aims to elucidate the mechanisms by which GNC ameliorates IR-induced DOR through comprehensive pharmacological and experimental validation.
METHODS
The study combined Liquid chromatograph mass spectrometer (LC-MS), ultra-performance liquid chromatography (UPLC-TOF-MS/MS), network pharmacology, and molecular docking to identify active components and key therapeutic targets of GNC. Functional enrichment analyses (GO and KEGG) and molecular docking studies were performed. A high-fat diet-induced mouse model of IR-DOR was established, followed by GNC treatment at varying doses. Therapeutic effects were evaluated via qRT-PCR, western blot, immunofluorescence, and histological analysis.
RESULTS
GNC contains 219 active ingredients targeting 53 genes associated with IR-induced DOR. KEGG analysis revealed the estrogen signaling pathway as a key mechanism. High-dose GNC significantly improved IR and ovarian reserve by increasing AKT1, ESR1, and ESR2 expression, as confirmed by qRT-PCR, western blot and immunofluorescence analysis. These findings indicate that GNC enhances insulin sensitivity, promotes follicular development, and restores ovarian function.
CONCLUSIONS
This study demonstrates for the first time that GNC alleviates IR-induced DOR by modulating the estrogen signaling pathway and activating key molecular targets. These results provide a foundation for clinical research and the development of novel therapeutic strategies for DOR.
CLINICAL TRIAL NUMBER
Not applicable.
Collapse