1
|
Justa HCD, Baldissera AB, Machado MI, Souza SH, Polli NLC, Boia-Ferreira M, Schluga PHDC, Donatti L, Wille ACM, Minozzo JC, Gremski LH, Veiga SS. Induction of ectosome formation by binding of phospholipases D from Loxosceles venoms to endothelial cell surface: Mechanism of interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159579. [PMID: 39547302 DOI: 10.1016/j.bbalip.2024.159579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Members of the phospholipase D (PLD) superfamily found in Loxosceles spider venoms are potent toxins with inflammatory and necrotizing activities. They degrade phospholipids in cell membranes, generating bioactive molecules that activate skin cells. These skin cells, in turn, activate leukocytes involved in dermonecrosis, characterized by aseptic coagulative necrosis. Although the literature has advanced in understanding the structure-function relationship, the cell biology resulting from the interactions of these molecules with cells remains poorly understood. In this study, we show that different cells exposed to recombinant PLDs bind these molecules to their plasma membrane, leading to the subsequent organization of extracellular microvesicles/ectosomes. The binding occurs as quickly as five minutes or less after exposure, increases over time, and eventually, the PLDs are expelled from the cell surface without generating cytotoxicity. PLDs are not endocytosed, nor do they spatially colocalize with acidic organelles in the intracellular environment. At least two regions of PLDs - the domain involved in magnesium ion coordination and the choline binding site - appear to play a role in cell surface binding and ectosome organization. However, the amino acids involved in catalysis do not participate in these events. The binding of these PLDs to the cell membrane, independent of catalytic activity, is sufficient to trigger intracellular signaling and enhance the expression of the pro-inflammatory IL-8 gene. These results are supported by the observation that isoforms of PLDs lacking catalytic activity induce an inflammatory response in vivo when injected into the skin of rabbits, without causing dermonecrosis. Our data indicate that these PLDs bind to the surface of target cells, promoting the organization of extracellular vesicles/ectosomes. Subsequently, these events activate pro-inflammatory genes and induce an inflammatory response in vivo. The binding to cells is not dependent on amino acids involved in catalysis but rather on amino acids involved in magnesium coordination. The binding of PLDs to the cell surface, formation of ectosomes, and activation of cells appear to initiate signals involved in inflammatory responses that can lead to dermonecrosis in accidents. This correlation is supported by experimental observations indicating that the events of toxin binding to cells, formation of microvesicles, and inflammatory responses observed both in vitro and in vivo are interconnected.
Collapse
Affiliation(s)
- Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | | | - Samira Hajjar Souza
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | - Marianna Boia-Ferreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | - Lucelia Donatti
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | - Ana Carolina M Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara 83302-200, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | - Silvio S Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil.
| |
Collapse
|
2
|
Polli NLC, Ferreira MEDF, Schluga PHC, Antunes BC, Justa HCD, Theodoro JL, Zazula MF, Naliwaiko K, Minozzo JC, Senff-Ribeiro A, Wille ACM, Veiga SS, Gremski LH. Novel insights into the application of recombinant mutated phospholipases D as antigens for developing new strategies against Loxoscelism. Acta Trop 2024; 258:107354. [PMID: 39106916 DOI: 10.1016/j.actatropica.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Matheus Felipe Zazula
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Katya Naliwaiko
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, 84030-900, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil.
| |
Collapse
|
3
|
Lachmayr H, Merrill AH. A Brief Overview of the Toxic Sphingomyelinase Ds of Brown Recluse Spider Venom and Other Organisms and Simple Methods To Detect Production of Its Signature Cyclic Ceramide Phosphate. Mol Pharmacol 2024; 105:144-154. [PMID: 37739813 PMCID: PMC10877732 DOI: 10.1124/molpharm.123.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.
Collapse
Affiliation(s)
- Hannah Lachmayr
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|