1
|
Truman B, Ma L, Stewart S, Kingsley K, Sullivan V. Assessment of Endocyn on Dental Pulp Stem Cells (DPSCs): A Pilot Study of Endodontic Irrigant Effects. Methods Protoc 2025; 8:18. [PMID: 39997642 PMCID: PMC11858511 DOI: 10.3390/mps8010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Many endodontic procedures within the pediatric population are performed with patients aged 12 years and older, using intracanal irrigants to complement mechanical debridement for the removal of debris and to disinfect the root canal system. The use of antimicrobial irrigants that limit damage to the dental pulp are the goals of endodontic biomaterials research. Using an existing biorepository of dental pulp stem cells (DPSCs), Endocyn was evaluated in varying concentrations in proliferation and viability assays, and compared with positive (sodium hypochlorite or bleach) and negative (phosphate-buffered saline) controls. The DPSC viability was reduced in the range of -8.3% to -15.8%, p = 0.22 to p = 0.042, while the growth inhibition varied between -29.7% and -63%, p = 0.041 to p = 0.022. However, the RNA analysis revealed that no significant changes in biomarker mRNA expression (Nestin, NANOG, Sox2, Oct4, CD73, CD90, and CD105) were observed. These data demonstrated that all of the concentrations of Endocyn inhibited the DPSC viability and growth, although only high concentrations were statistically significant. Moreover, the administration of Endocyn did not alter the DPSC biomarker expression, which are novel and important findings not previously observed or reported that may assist with the development of clinical decision protocols and methods for the treatment of vital pulp tissue.
Collapse
Affiliation(s)
- Brennan Truman
- Department of Advanced Education in Pediatric Dentistry, School of Dental Medicine, University of Nevada, 1700 West Charleston Blvd, Las Vegas, NV 89106, USA (V.S.)
| | - Linda Ma
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 West Charleston Blvd, Las Vegas, NV 89106, USA
| | - Samuel Stewart
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada, 1700 West Charleston Blvd, Las Vegas, NV 89106, USA
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA
| | - Victoria Sullivan
- Department of Advanced Education in Pediatric Dentistry, School of Dental Medicine, University of Nevada, 1700 West Charleston Blvd, Las Vegas, NV 89106, USA (V.S.)
| |
Collapse
|
2
|
Qiu D, Wang L, Wang L, Dong Y. Human platelet lysate: a potential therapeutic for intracerebral hemorrhage. Front Neurosci 2025; 18:1517601. [PMID: 39881806 PMCID: PMC11774881 DOI: 10.3389/fnins.2024.1517601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis. In this review, we thoroughly explore the potential of HPL for treating ICH from three critical perspectives: the rationale for selecting HPL as a treatment for ICH, the mechanisms through which HPL contributes to ICH management, and the additional measures necessary for HPL as a treatment for ICH. We elucidate the role of platelets in ICH pathophysiology and highlight the limitations of the current treatment options and advancements in preclinical research on the application of HPL in neurological disorders. Furthermore, historical developments and preparation methods of HPL in the field of biomedicine are discussed. Additionally, we summarize the bioactive molecules present in HPL and their potential therapeutic effects in ICH. Finally, we outline the issues that must be addressed regarding utilizing HPL as a treatment modality for ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lanlan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Choudhary P, Gupta A, Gupta SK, Dwivedi S, Singh S. Comparative evaluation of divergent concoction of NGF, BDNF, EGF, and FGF growth factor's role in enhancing neuronal differentiation of adipose-derived mesenchymal stem cells. Int J Biol Macromol 2024; 260:129561. [PMID: 38246449 DOI: 10.1016/j.ijbiomac.2024.129561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
MSCs (Mesenchymal Stem Cells) can differentiate into various lineages, including neurons and glial cells. In the past few decades, MSCs have been well explored in the context of neuronal differentiation and have been reported to have the immense potential to form distinct kinds of neurons. The distinguishing features of MSCs make them among the most desired cell sources for stem cell therapy. This study involved the trans-differentiation of Adipose-derived human Mesenchymal Stem Cells (ADMSCs) into neurons. The protocol employs a cocktail of chemical inducers in different combinations, including Brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), and Nerve growth factor (NGF) Fibroblastic growth factor (FGF), in induction media. Both types have been successfully differentiated into neurons, confirmed by morphological aspects and the presence of neural-specific markers through RT-PCR (Reverse transcription polymerase chain reaction) studies and immunocytochemistry assay. They have shown excellent morphology with long neurites, synaptic connections, and essential neural markers to validate their identity. The results may significantly contribute to cell replacement therapy for neurological disorders.
Collapse
Affiliation(s)
- Princy Choudhary
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Ayushi Gupta
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Saurabh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Shrey Dwivedi
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India.
| |
Collapse
|
4
|
Yao L, Xu W, Liu L, Xu X, Xi H, Xue B, Cao X, Lin S, Piao G, Sun J, Wang X. The involvement of Neuregulin-1 in the process of facial nerve injury repair through the utilization of dental pulp stem cells. BMC Oral Health 2024; 24:238. [PMID: 38355448 PMCID: PMC10868091 DOI: 10.1186/s12903-024-03953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Facial nerve injury often results in poor prognosis due to the challenging process of nerve regeneration. Neuregulin-1, a human calmodulin, is under investigation in this study for its impact on the reparative capabilities of Dental Pulp Stem Cells (DPSCs) in facial nerve injury. METHODS Lentivirus was used to transfect and construct Neuregulin-1 overexpressed DPSCs. Various techniques assessed the effects of Neuregulin-1: osteogenic induction, lipid induction, Reverse Transcription Polymerase Chain Reaction, Western Blot, Cell Counting Kit-8 assay, wound healing, immunofluorescence, Phalloidin staining, nerve stem action potential, Hematoxylin-eosin staining, transmission electron microscopy, and immunohistochemistry. RESULTS Neuregulin-1 effectively enhanced the proliferation, migration, and cytoskeletal rearrangement of DPSCs, while simultaneously suppressing the expression of Ras homolog gene family member A (RhoA) and Microfilament actin (F-actin). These changes facilitated the neural differentiation of DPSCs. Additionally, in vivo experiments showed that Neuregulin-1 expedited the restoration of action potential in the facial nerve trunk, increased the thickness of the myelin sheath, and stimulated axon regeneration. CONCLUSION Neuregulin-1 has the capability to facilitate the repair of facial nerve injuries by promoting the regenerative capacity of DPSCs. Thus, Neuregulin-1 is a significant potential gene in the reparative processes of nerve damage.
Collapse
Affiliation(s)
- Lihong Yao
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Wanqiu Xu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Lixue Liu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Xiaohang Xu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Hualei Xi
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Bing Xue
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Xiaofang Cao
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Song Lin
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Guiyan Piao
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Jian Sun
- Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Xiumei Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
5
|
Bassett C, Triplett H, Lott K, Howard KM, Kingsley K. Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines 2023; 11:3003. [PMID: 38002003 PMCID: PMC10669296 DOI: 10.3390/biomedicines11113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
This study sought to evaluate the expression of previously identified microRNAs known to regulate neuronal differentiation in mesenchymal stem cells (MSCs), including miR-27, miR-125, miR-128, miR-135, miR-140, miR-145, miR-218 and miR-410, among dental pulp stem cells (DPSCs) under conditions demonstrated to induce neuronal differentiation. Using an approved protocol, n = 12 DPSCs were identified from an existing biorepository and treated with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), which were previously demonstrated to induce neural differentiation markers including Sox1, Pax6 and NFM among these DPSCs. This study revealed that some microRNAs involved in the neuronal differentiation of MSCs were also differentially expressed among the DPSCs, including miR-27 and miR-145. In addition, this study also revealed that administration of bFGF and EGF was sufficient to modulate miR-27 and miR-145 expression in all of the stimulus-responsive DPSCs but not among all of the non-responsive DPSCs-suggesting that further investigation of the downstream targets of these microRNAs may be needed to fully evaluate and understand these observations.
Collapse
Affiliation(s)
- Charlton Bassett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Hunter Triplett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Keegan Lott
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Katherine M. Howard
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
6
|
施 剑, 殷 明. [Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1276-1283. [PMID: 37848325 PMCID: PMC10581868 DOI: 10.7507/1002-1892.202306017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. Methods The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. Results When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Collapse
Affiliation(s)
- 剑明 施
- 景德镇市第一人民医院骨科(江西景德镇 333000)Department of Orthopaedics, Jingdezhen First People’s Hospital, Jingdezhen Jiangxi, 333000, P. R. China
| | - 明 殷
- 景德镇市第一人民医院骨科(江西景德镇 333000)Department of Orthopaedics, Jingdezhen First People’s Hospital, Jingdezhen Jiangxi, 333000, P. R. China
| |
Collapse
|
7
|
Hengtrakool C, Wanichpakorn S, Kedjarune-Leggat U. Chitosan Resin-Modified Glass Ionomer Cement Containing Epidermal Growth Factor Promotes Pulp Cell Proliferation with a Minimum Effect on Fluoride and Aluminum Release. Polymers (Basel) 2023; 15:3511. [PMID: 37688136 PMCID: PMC10490150 DOI: 10.3390/polym15173511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The development of biomaterials that are able to control the release of bioactive molecules is a challenging task for regenerative dentistry. This study aimed to enhance resin-modified glass ionomer cement (RMGIC) for the release of epidermal growth factor (EGF). This RMGIC was formulated from RMGIC powder supplemented with 15% (w/w) chitosan at a molecular weight of either 62 or 545 kDa with 5% bovine serum albumin mixed with the same liquid component as the Vitrebond. EGF was added while mixing. ELISA was used to determine EGF release from the specimen immersed in phosphate-buffered saline at 1 h, 3 h, 24 h, 3 d, 1 wk, 2 wks, and 3 wks. Fluoride and aluminum release at 1, 3, 5, and 7 d was measured by electrode and inductively coupled plasma optical emission spectrometry. Pulp cell viability was examined through MTT assays and the counting of cell numbers using a Coulter counter. The RMGIC with 65 kDa chitosan is able to prolong the release of EGF for significantly longer than RMGIC for at least 3 wks due to its retained bioactivity in promoting pulp cell proliferation. This modified RMGIC can prolong the release of fluoride, with a small amount of aluminum also released for a limited time. This biomaterial could be useful in regenerating pulp-dentin complexes.
Collapse
Affiliation(s)
- Chanothai Hengtrakool
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supreya Wanichpakorn
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
8
|
Wang Z, Huang M, Zhang Y, Jiang X, Xu L. Comparison of Biological Properties and Clinical Application of Mesenchymal Stem Cells from the Mesoderm and Ectoderm. Stem Cells Int 2023; 2023:4547875. [PMID: 37333060 PMCID: PMC10276766 DOI: 10.1155/2023/4547875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Since the discovery of mesenchymal stem cells (MSCs) in the 1970s, they have been widely used in the treatment of a variety of diseases because of their wide sources, strong differentiation potential, rapid expansion in vitro, low immunogenicity, and so on. At present, most of the related research is on mesoderm-derived MSCs (M-MSCs) such as bone marrow MSCs and adipose-derived MSCs. As a type of MSC, ectoderm-derived MSCs (E-MSCs) have a stronger potential for self-renewal, multidirectional differentiation, and immunomodulation and have more advantages than M-MSCs in some specific conditions. This paper analyzes the relevant research development of E-MSCs compared with that of M-MSCs; summarizes the extraction, discrimination and culture, biological characteristics, and clinical application of E-MSCs; and discusses the application prospects of E-MSCs. This summary provides a theoretical basis for the better application of MSCs from both ectoderm and mesoderm in the future.
Collapse
Affiliation(s)
- Zhenning Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Huang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lulu Xu
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
10
|
Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness. J Funct Biomater 2023; 14:jfb14020091. [PMID: 36826890 PMCID: PMC9963712 DOI: 10.3390/jfb14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to differentiate in a limited number of other tissue types. Some evidence has suggested the modulation of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth assays were performed, which revealed FN, LN5 and the combination of these were sufficient to induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition, the administration of FN (either alone or in combination) was sufficient to induce the expression of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2. These results add to the growing body of evidence suggesting that functional biomaterials, such as ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers or additional factors are necessary and sufficient to induce the differentiation and development of DPSCs ex vivo and in vitro for biomedical applications.
Collapse
|