1
|
Yao XT, Feng WP, Gong ZP, Li XP. Clinical Significance of Long Non-Coding RNA SNHG5 in the Diagnosis and Prognosis of Chronic Obstructive Pulmonary Disease. COPD 2024; 21:2363630. [PMID: 38973373 DOI: 10.1080/15412555.2024.2363630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is preventable and requires early screening. The study aimed to examine the clinical values of long non-coding RNA (lncRNA) SNHG5 in COPD diagnosis and prognosis. Out of 160 COPD patients, 80 were in the stable stage and 80 were in the acute exacerbation of COPD stage (AECOPD). SNHG5 expression was detected via qRT-PCR. The survival analysis was conducted using Cox regression analysis and K-M curve. SNHG5 levels significantly reduced in both stable COPD and AECOPD groups compared with the control group, with AECOPD group recording the lowest values. SNHG5 levels were negatively correlated with GOLD stage. Serum SNHG5 can differentiate stable COPD patients from healthy individuals (AUC = 0.805), and can screen AECOPD from stable ones (AUC = 0.910). SNHG5 negatively influenced the release of inflammatory cytokines. For AECOPD patients, those with severe cough and wheezing dyspnea symptoms exhibited the lowest values of SNUG5. Among the 80 AECOPD patients, 16 cases died in the one-year follow-up, all of whom had low levels of SNHG5. SNHG5 levels independently influenced survival outcomes, patients with low SNHG5 levels had a poor prognosis. Thus, lncRNA SNHG5, which is downregulated in patients with COPD (especially AECOPD), can potentially protect against AECOPD and serve as a novel prognostic biomarker for AECOPD.
Collapse
Affiliation(s)
- Xue-Ting Yao
- Department of Respiratory and Critical Care Medicine, Zhangjiakou First Hospital, Zhangjiakou, China
| | - Wen-Ping Feng
- Department of Respiratory and Critical Care Medicine, Zhangjiakou First Hospital, Zhangjiakou, China
| | - Zhi-Peng Gong
- Department of Respiratory and Critical Care Medicine, Zhangjiakou First Hospital, Zhangjiakou, China
| | - Xin-Peng Li
- Department of Respiratory and Critical Care Medicine, Zhangjiakou First Hospital, Zhangjiakou, China
| |
Collapse
|
2
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
3
|
Tang H, Guo Y, Gan S, Chen Z, Dong M, Lin L, Chen H, Ji X, Xian M, Shi X, Tao A, Lv Y, Yao L, Chen R, Li S, Li J. GLUT1 mediates the release of HMGB1 from airway epithelial cells in mixed granulocytic asthma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167040. [PMID: 38281711 DOI: 10.1016/j.bbadis.2024.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Asthma is quite heterogenous and can be categorized as eosinophilic, mixed granulocytic (presence of both eosinophils and neutrophils in the airways) and neutrophilic. Clinically, mixed granulocytic asthma (MGA) often tends to be severe and requires large doses of corticosteroids. High mobility group box 1 (HMGB1) is one of the epithelium-derived alarmins that contributes to type 2 inflammation and asthma. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in modulation of airway epithelial HMGB1 production in MGA. Induced sputum and bronchial biopsy specimens were obtained from healthy subjects and asthma patients. BALB/c mice, the airway epithelial cell line BEAS-2B, or primary human bronchial epithelial cells (HBECs) were immunized with allergens. Intracellular and extracellular HMGB1 were both detected. The role of GLUT1 was assessed by using a pharmacological antagonist BAY876. MGA patients have a significant higher sputum HMGB1 level than the health and subjects with other inflammatory phenotypes. Nuclear-to-cytoplasmic translocation of HMGB1 was also observed in the bronchial epithelia. Allergen exposure markedly induced GLUT1 expression in murine lungs and cultured epithelial cells. Pharmacological antagonism of GLUT1 with BAY876 dramatically decreased airway hyperresponsiveness, neutrophil and eosinophil accumulation, as well as type 2 inflammation in murine models of MGA. Besides, the allergen-induced up-regulation of HMGB1 was also partly recovered by BAY876, accompanied by inhibited secretion into the airway lumen. In vitro, treatment with BAY876 relieved the allergen-induced over-expression and secretion of HMGB1 in airway epithelia. Taken together, our data indicated that GLUT1 mediates bronchial epithelial HMGB1 release in MGA.
Collapse
Affiliation(s)
- Haixiong Tang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubiao Guo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meihua Dong
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqin Lin
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huifang Chen
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Ji
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Gongdong, China
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Kuo SJ, Su YH, Hsu SC, Huang PH, Hsia CC, Liao CY, Chen SH, Wu RW, Hsu CC, Lai YC, Liu DY, Ku NE, Chen JF, Ko JY. Effects of Adding Extracorporeal Shockwave Therapy (ESWT) to Platelet-Rich Plasma (PRP) among Patients with Rotator Cuff Partial Tear: A Prospective Randomized Comparative Study. J Pers Med 2024; 14:83. [PMID: 38248784 PMCID: PMC10820784 DOI: 10.3390/jpm14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
A rotator cuff tear is a prevalent ailment affecting the shoulder joint. The clinical efficacy of combined therapy remains uncertain for partial rotator cuff tears. In this study, we integrated extracorporeal shockwave therapy (ESWT) with platelet-rich plasma (PRP) injection, juxtaposed with PRP in isolation. Both cohorts exhibited significant improvements in visual analogue scale (VAS), Constant-Murley score (CMS), degrees of forward flexion, abduction, internal rotation, and external rotation, and the sum of range of motion (SROM) over the six-month assessment period. The application of ESWT in conjunction with PRP exhibited notable additional enhancements in both forward flexion (p = 0.033) and abduction (p = 0.015) after one month. Furthermore, a substantial augmentation in the range of shoulder motion (SROM) (p < 0.001) was observed after six months. We employed isobaric tag for relative and absolute quantitation (iTRAQ) to analyze the differential plasma protein expression in serum samples procured from the two groups after one month. The concentrations of S100A8 (p = 0.042) and S100A9 (p = 0.034), known to modulate local inflammation, were both lower in the ESWT + PRP cohort. These findings not only underscore the advantages of combined therapy but also illuminate the associated molecular changes.
Collapse
Affiliation(s)
- Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung 404328, Taiwan; (S.-J.K.); (S.-C.H.); (D.-Y.L.); (N.-E.K.); (J.-F.C.)
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yu-Hsiang Su
- Department of Education, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-H.S.); (C.-C.H.)
| | - Shih-Chan Hsu
- School of Medicine, China Medical University, Taichung 404328, Taiwan; (S.-J.K.); (S.-C.H.); (D.-Y.L.); (N.-E.K.); (J.-F.C.)
| | - Po-Hua Huang
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-H.H.); (C.-Y.L.); (S.-H.C.); (R.-W.W.); (C.-C.H.)
| | - Chia-Chun Hsia
- Department of Education, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-H.S.); (C.-C.H.)
| | - Chin-Yi Liao
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-H.H.); (C.-Y.L.); (S.-H.C.); (R.-W.W.); (C.-C.H.)
| | - Sung-Hsiung Chen
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-H.H.); (C.-Y.L.); (S.-H.C.); (R.-W.W.); (C.-C.H.)
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-H.H.); (C.-Y.L.); (S.-H.C.); (R.-W.W.); (C.-C.H.)
| | - Chieh-Cheng Hsu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-H.H.); (C.-Y.L.); (S.-H.C.); (R.-W.W.); (C.-C.H.)
| | - Yen-Chun Lai
- School of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - De-Yi Liu
- School of Medicine, China Medical University, Taichung 404328, Taiwan; (S.-J.K.); (S.-C.H.); (D.-Y.L.); (N.-E.K.); (J.-F.C.)
| | - Nien-En Ku
- School of Medicine, China Medical University, Taichung 404328, Taiwan; (S.-J.K.); (S.-C.H.); (D.-Y.L.); (N.-E.K.); (J.-F.C.)
| | - Jui-Feng Chen
- School of Medicine, China Medical University, Taichung 404328, Taiwan; (S.-J.K.); (S.-C.H.); (D.-Y.L.); (N.-E.K.); (J.-F.C.)
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-H.H.); (C.-Y.L.); (S.-H.C.); (R.-W.W.); (C.-C.H.)
- Center for Shockwave Medicine and Tissue Engineering, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
5
|
Wu LR, Peng QY, Li XJ, Guo MY, He JQ, Ying HZ, Yu CH. Daqing formula ameliorated allergic asthma and airway dysbacteriosis in mice challenged with ovalbumin and ampicillin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117056. [PMID: 37597673 DOI: 10.1016/j.jep.2023.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic airway inflammatory disease that can lead to several complications caused by bacterial infections. However, recurrent attacks of the disease require long-term use of antibiotics, resulting in lung dysbiosis and poor outcomes. Daqing Formula (DQF) is a well-known herbal medicine in Pharmacopoeia of China, which is widely used for various stimuli-induced lower respiratory diseases, including asthma, bronchitis, and pneumonia. Thus, it has been demonstrated to be a plant-derived broad-spectrum antibiotic for treating and preventing various acute and chronic respiratory diseases. AIM OF THE STUDY This study evaluated the efficacy and possible mechanism of DQF on allergic asthma and airway dysbiosis. METHODS AND MATERIALS The mice were co-challenged with ovalbumin and ampicillin to induce allergic asthma combined with airway dysbacteriosis. The populations of lung microbiota were detected by using 16s DNA sequencing. The levels of asthmatic markers in BALF were detected by ELISA. The levels of Th1/Th2 cytokines in splenic CD4+ cells of mice were analyzed by flow cytometry. The expressions of the GSK-3β signaling pathway in the lung tissues of asthmatic mice and eosinophils were detected by western blotting assay. The inhibition of DQF on the production of pro-inflammatory cytokines in eosinophils of asthmatic mice. RESULTS The results showed that treatment with DQF at 200-800 mg/kg doses significantly reduced the frequency of nasal rubbing and lung inflammation as well as the number of total cells, eosinophils, and macrophages in bronchoalveolar lavage fluid. It decreased the relative abundances of Streptococcus, Cuoriavidus, and Moraxella, increased Akkermansia and Prevotella_6 in lung tissues of asthmatic mice, and inhibited the growth of Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae and their resistant strains in vitro. Furthermore, DQF reduced the levels of eotaxin, TSLP, IL-4, IL-5, IL-25, and IL-33, but enhanced IFN-γ and IL-12 in BALF. It elevated the population of Th1 cells, inhibited eosinophil activation, and downregulated the expressions of p-GSK-3β, p-p65, nuclear β-catenin, and p-STAT3 in the lung tissues of asthmatic mice. CONCLUSIONS The results revealed that DQF reduced airway inflammation, ameliorated lung dysbiosis, shifted the Th1/Th2 balance, and inhibited eosinophil activation in asthmatic mice, indicating its potential for severe asthma treatment.
Collapse
Affiliation(s)
- Li-Ren Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qian-Yu Peng
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Yang Q, Li M, Hou Y, He H, Sun S. High-mobility group box 1 emerges as a therapeutic target for asthma. Immun Inflamm Dis 2023; 11:e1124. [PMID: 38156383 PMCID: PMC10739362 DOI: 10.1002/iid3.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved nonhistone nuclear protein found in the calf thymus and participates in a variety of intracellular processes such as DNA transcription, replication and repair. In the cytoplasm, HMGB1 promotes mitochondrial autophagy and is involved in in cellular stress response. Once released into the extracellular, HMGB1 becomes an inflammatory factor that triggers inflammatory responses and a variety of immune responses. In addition, HMGB1 binding with the corresponding receptor can activate the downstream substrate to carry out several biological effects. Meanwhile, HMGB1 is involved in various signaling pathways, such as the HMGB1/RAGE pathway, HMGB1/NF-κB pathway, and HMGB1/JAK/STAT pathway, which ultimately promote inflammation. Moreover, HMGB1 may be involved in the pathogenesis of asthma by regulating downstream signaling pathways through corresponding receptors and mediates a number of signaling pathways in asthma, such as HMGB1/TLR4/NF-κB, HMGB1/RAGE, HMGB1/TGF-β, and so forth. Accordingly, HMGB1 emerges as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Qianni Yang
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
- 2021 Class 2 of AnesthesiologyKunming Medical UniversityKunmingChina
| | - Min Li
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Huilin He
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Shibo Sun
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
7
|
van Dijk YE, Rutjes NW, Golebski K, Şahin H, Hashimoto S, Maitland-van der Zee AH, Vijverberg SJH. Developments in the Management of Severe Asthma in Children and Adolescents: Focus on Dupilumab and Tezepelumab. Paediatr Drugs 2023; 25:677-693. [PMID: 37658954 PMCID: PMC10600295 DOI: 10.1007/s40272-023-00589-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Severe asthma in children and adolescents exerts a substantial health, financial, and societal burden. Severe asthma is a heterogeneous condition with multiple clinical phenotypes and underlying inflammatory patterns that might be different in individual patients. Various add-on treatments have been developed to treat severe asthma, including monoclonal antibodies (biologics) targeting inflammatory mediators. Biologics that are currently approved to treat children (≥ 6 years of age) or adolescents (≥ 12 years of age) with severe asthma include: anti-immunoglobulin E (omalizumab), anti-interleukin (IL)-5 (mepolizumab), anti-IL5 receptor (benralizumab), anti-IL4/IL13 receptor (dupilumab), and antithymic stromal lymphopoietin (TSLP) (tezepelumab). However, access to these targeted treatments varies across countries and relies on few and crude indicators. There is a need for better treatment stratification to guide which children might benefit from these treatments. In this narrative review we will assess the most recent developments in the treatment of severe pediatric asthma, as well as potential biomarkers to assess treatment efficacy for this patient population.
Collapse
Affiliation(s)
- Yoni E van Dijk
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels W Rutjes
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Korneliusz Golebski
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Havva Şahin
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Hashimoto
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
9
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|