1
|
Takata T, Taniguchi S, Mae Y, Kageyama K, Fujino Y, Iyama T, Hikita K, Sugihara T, Isomoto H. Comparative assessment of the effects of dotinurad and febuxostat on the renal function in chronic kidney disease patients with hyperuricemia. Sci Rep 2025; 15:8990. [PMID: 40089552 PMCID: PMC11910530 DOI: 10.1038/s41598-025-94020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Although hyperuricemia is associated with chronic kidney disease (CKD), the impact of uric acid (UA)-lowering drugs on CKD has been controversial. Previous investigations have primarily included xanthine oxidase inhibitors; therefore, research of dotinurad, a recently developed selective urate reabsorption inhibitor, is necessary. This retrospective study included 58 patients with CKD; of these, 29 newly initiated dotinurad and 29 initiated febuxostat. The effects of dotinurad and febuxostat on the serum UA, urinary UA-to-creatinine ratio (UUCR), and estimated glomerular filtration rate (eGFR) during 3 months were analyzed to compare their impacts on renal function. Dotinurad and febuxostat decreased serum UA (8.40 ± 1.11 to 6.50 ± 0.80 mg/dL [p < 0.001] and 8.91 ± 1.21 to 6.05 ± 1.28 mg/dL [p = < 0.001], respectively). The UUCR increased after dotinurad (0.35 ± 0.15 to 0.40 ± 0.21 g/gCr [p = 0.024]); however, it decreased after febuxostat (0.33 ± 0.12 to 0.21 ± 0.06 g/gCr [p = 0.002]). The eGFR improved after dotinurad (33.9 ± 15.2 to 36.2 ± 15.9 mL/min/1.73 m2 [p < 0.001]). No change was observed after febuxostat treatment (33.4 ± 19.6 to 34.1 ± 21.6 mL/min/1.73 m2). Renal function improved only with dotinurad, thus highlighting its renoprotective effects beyond the reduction of serum UA.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan.
| | - Sosuke Taniguchi
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Kana Kageyama
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Yudai Fujino
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Takuji Iyama
- Kidney Center, Tottori University Hospital, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Katsuya Hikita
- Kidney Center, Tottori University Hospital, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Takaaki Sugihara
- School of Health Science, Major in Clinical Laboratory Science, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
2
|
Li X, Huang B, Liu Y, Wang M, Cui JQ. Uric acid in diabetic microvascular complications: Mechanisms and therapy. J Diabetes Complications 2025; 39:108929. [PMID: 39689504 DOI: 10.1016/j.jdiacomp.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Uric acid (UA) is mainly synthesized in the liver, intestine, and vascular endothelium and excreted by the kidney (70 %) and intestine (30 %). Hyperuricemia (HUA) occurs when UA production exceeds excretion. Many studies have found that elevated UA is associated with diabetic microvascular complications (DMC), including diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic peripheral neuropathy (DPN). In addition, too high or too low UA levels will promote the occurrence and development of chronic diseases, but the relationship between UA and diabetic microvascular complications (DMC) is not clear. Therefore, the rational treatment of UA in patients with diabetes is essential. In this review, we summarize and discuss the mechanism and treatment of UA and DMC and may provide potential advice for rational drug selection.
Collapse
Affiliation(s)
- Xin Li
- Tianjin Medical University General Hospital, People's Republic of China
| | - Bo Huang
- Tianjin Medical University General Hospital, People's Republic of China
| | - Yue Liu
- Tianjin Medical University General Hospital, People's Republic of China
| | - Meng Wang
- Tianjin Medical University General Hospital, People's Republic of China
| | - Jing-Qiu Cui
- Tianjin Medical University General Hospital, People's Republic of China.
| |
Collapse
|
3
|
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. A Possible Therapeutic Application of the Selective Inhibitor of Urate Transporter 1, Dotinurad, for Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease. Cells 2024; 13:450. [PMID: 38474414 PMCID: PMC10931163 DOI: 10.3390/cells13050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (S.I.); (H.K.)
| | | | | | | | | |
Collapse
|
4
|
Yip K, Braverman G, Yue L, Fields T. Pipeline Therapies for Gout. Curr Rheumatol Rep 2024; 26:69-80. [PMID: 38133712 DOI: 10.1007/s11926-023-01128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW Despite effective available treatments, gout management is often unsuccessful in getting patients to target serum urate goal and in managing flares in the setting of comorbidities. Studies addressing future treatment options for short- and long-term management are reviewed. RECENT FINDINGS URAT-1 blocking agents have been helpful but have had limitations related to effects on renal function, lack of efficacy with renal impairment, and potential to increase renal stones. Dotinurad may function in the setting of decreased renal function. Arhalofenate has anti-URAT-1 activity and may also blunt gout flares. A new xanthine oxidase inhibitor (XOI), tigulixostat, is under study. New uricase treatments manufactured in combination with agents that can reduce immunogenicity may make uricase treatment simpler. A unique strategy of inhibiting gut uricase may offer the benefits of avoiding systemic absorption. For gout flares, IL-1β inhibitor studies in progress include different dosing schedules. Dapansutrile, an oral agent under investigation, inhibits activation of the NLRP3 inflammasome and may be an effective anti-inflammatory. New treatments for gout that are under study may work in the setting of comorbidities, simplify management, utilize new mechanisms, or have reduced side effects.
Collapse
Affiliation(s)
- Kevin Yip
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA.
| | - Genna Braverman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Linda Yue
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Theodore Fields
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
5
|
Terkeltaub R. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs 2023; 83:1501-1521. [PMID: 37819612 DOI: 10.1007/s40265-023-01944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Hyperuricemia with consequent monosodium urate crystal deposition leads to gout, characterized by painful, incapacitating inflammatory arthritis flares that are also associated with increased cardiovascular event and related mortality risk. This narrative review focuses on emerging pharmacologic urate-lowering treatment (ULT) and management strategies in gout. Undertreated, gout can progress to palpable tophi and joint damage. In oral ULT clinical trials, target serum urate of < 6.0 mg/dL can be achieved in ~ 80-90% of subjects, with flare burden reduction by 1-2 years. However, real-world ULT results are far less successful, due to both singular patient nonadherence and prescriber undertreatment, particularly in primary care, where most patients are managed. Multiple dose titrations commonly needed to optimize first-line allopurinol ULT monotherapy, and substantial potential toxicities and other limitations of approved, marketed oral monotherapy ULT drugs, promote hyperuricemia undertreatment. Common gout comorbidities with associated increased mortality (e.g., moderate-severe chronic kidney disease [CKD], type 2 diabetes, hypertension, atherosclerosis, heart failure) heighten ULT treatment complexity and emphasize unmet needs for better and more rapid clinically significant outcomes, including attenuated gout flare burden. The gout drug armamentarium will be expanded by integrating sodium-glucose cotransporter-2 (SGLT2) inhibitors with uricosuric and anti-inflammatory properties as well as clinically indicated antidiabetic, nephroprotective, and/or cardioprotective effects. The broad ULT developmental pipeline is loaded with multiple uricosurics that selectively target uric acid transporter 1 (URAT1). Evolving ULT approaches include administering selected gut anaerobic purine degrading bacteria (PDB), modulating intestinal urate transport, and employing liver-targeted xanthine oxidoreductase mRNA knockdown. Last, emerging measures to decrease the immunogenicity of systemically administered recombinant uricases should simplify treatment regimens and further improve outcomes in managing the most severe gout phenotypes.
Collapse
Affiliation(s)
- Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Kuwabara M, Fukuuchi T, Aoki Y, Mizuta E, Ouchi M, Kurajoh M, Maruhashi T, Tanaka A, Morikawa N, Nishimiya K, Akashi N, Tanaka Y, Otani N, Morita M, Miyata H, Takada T, Tsutani H, Ogino K, Ichida K, Hisatome I, Abe K. Exploring the Multifaceted Nexus of Uric Acid and Health: A Review of Recent Studies on Diverse Diseases. Biomolecules 2023; 13:1519. [PMID: 37892201 PMCID: PMC10604821 DOI: 10.3390/biom13101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of patients with hyperuricemia or gout is increasing worldwide. Hyperuricemia and gout are primarily attributed to genetic factors, along with lifestyle factors like consuming a purine-rich diet, alcohol and/or fructose intake, and physical activity. While numerous studies have reported various comorbidities linked to hyperuricemia or gout, the range of these associations is extensive. This review article focuses on the relationship between uric acid and thirteen specific domains: transporters, genetic factors, diet, lifestyle, gout, diabetes mellitus, metabolic syndrome, atherosclerosis, hypertension, kidney diseases, cardiovascular diseases, neurological diseases, and malignancies. The present article provides a comprehensive review of recent developments in these areas, compiled by experts from the Young Committee of the Japanese Society of Gout and Uric and Nucleic Acids. The consolidated summary serves to enhance the global comprehension of uric acid-related matters.
Collapse
Affiliation(s)
- Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, 2-2-2-Toranomon, Minato, Tokyo 105-8470, Japan
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Itabashi, Tokyo 173-8605, Japan;
| | - Yuhei Aoki
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan;
| | - Einosuke Mizuta
- Department of Cardiology, Sanin Rosai Hospital, Yonago 683-8605, Tottori, Japan;
| | - Motoshi Ouchi
- Department of Health Promotion in Nursing and Midwifery, Innovative Nursing for Life Course, Graduate School of Nursing, Chiba University, Chiba 260-8672, Chiba, Japan;
- Department of Pharmacology and Toxicology, School of Medicine, Dokkyo Medical University, Mibu 321-0293, Tochigi, Japan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka 5454-8585, Osaka, Japan;
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan;
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Saga 849-8501, Saga, Japan;
| | - Nagisa Morikawa
- Division of Cardio-Vascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Fukuoka, Japan;
- Department of Community Medicine, Kurume University School of Medicine, Kurume 830-0011, Fukuoka, Japan
| | - Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Hospital, Sendai 980-8574, Miyagi, Japan;
| | - Naoyuki Akashi
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama 330-8503, Saitama, Japan;
| | - Yoshihiro Tanaka
- Division of Epidemiology, Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Shizuoka, Japan;
| | - Naoyuki Otani
- Cardiovascular Center, Dokkyo Medical University Nikko Medical Center, Nikko 321-1298, Tochigi, Japan;
| | - Mihoko Morita
- Department of Hematology and Oncology, University of Fukui Hospital, Eiheiji 910-1193, Fukui, Japan;
| | - Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo, Tokyo 113-8655, Japan; (H.M.); (T.T.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo, Tokyo 113-8655, Japan; (H.M.); (T.T.)
| | - Hiroshi Tsutani
- National Hospital Organization Awara Hospital, Awara 910-4272, Fukui, Japan;
| | - Kazuhide Ogino
- Department of Cardiology, Japanese Red Cross Tottori Hospital, Tottori 680-8517, Tottori, Japan;
| | - Kimiyoshi Ichida
- Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Ichiro Hisatome
- National Hospital Organization Yonago Medical Center, Yonago 683-0006, Tottori, Japan;
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Fukuoka, Japan;
| |
Collapse
|
7
|
Tanaka Y, Nagoshi T, Takahashi H, Oi Y, Yasutake R, Yoshii A, Kimura H, Kashiwagi Y, Tanaka TD, Shimoda M, Yoshimura M. URAT1 is expressed in cardiomyocytes and dotinurad attenuates the development of diet-induced metabolic heart disease. iScience 2023; 26:107730. [PMID: 37694143 PMCID: PMC10483053 DOI: 10.1016/j.isci.2023.107730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
We recently reported that the selective inhibition of urate transporter-1 (URAT1), which is primarily expressed in the kidneys, ameliorates insulin resistance by attenuating hepatic steatosis and improving brown adipose tissue function in diet-induced obesity. In this study, we evaluated the effects of dotinurad, a URAT1-selective inhibitor, on the hearts of high-fat diet (HFD)-fed obese mice for 16-20 weeks and on neonatal rat cardiomyocytes (NRCMs) exposed to palmitic acid. Outside the kidneys, URAT1 was also expressed in cardiomyocytes and indeed worked as a uric acid transporter. Dotinurad substantially attenuated HFD-induced cardiac fibrosis, inflammatory responses, and cardiac dysfunction. Intriguingly, among various factors related to the pathophysiology of diet-induced obesity, palmitic acid significantly increased URAT1 expression in NRCMs and subsequently induced apoptosis, oxidative stress, and inflammatory responses via MAPK pathway, all of which were reduced by dotinurad. These results indicate that URAT1 is a potential therapeutic target for metabolic heart disease.
Collapse
Affiliation(s)
- Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hirotake Takahashi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Rei Yasutake
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Akira Yoshii
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toshikazu D. Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
8
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. A Possible Exquisite Crosstalk of Urate Transporter 1 With Other Urate Transporters for Chronic Kidney Disease and Cardiovascular Disease Induced by Dotinurad. Cardiol Res 2023; 14:158-160. [PMID: 37091888 PMCID: PMC10116931 DOI: 10.14740/cr1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
- Corresponding Author: Hidekatsu Yanai, Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Ichikawa, Chiba 272-8516, Japan.
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|