1
|
Yadav K, Sahu KK, Sucheta, Minz S, Pradhan M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025; 93:102749. [PMID: 39904192 DOI: 10.1016/j.tice.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Exosomes are microscopic vesicles released by cells that transport various biological materials and play a vital role in intercellular communication. When they are engineered, they serve as efficient delivery systems for therapeutic agents, making it possible to precisely deliver active pharmaceutical ingredients to organs, tissues, and cells. Exosomes' pharmacokinetics, or how they are transported and metabolized inside the body, is affected by several factors, including their source of origination and the proteins in their cell membranes. The pharmacokinetics and mobility of both native and modified exosomes are being observed in living organisms using advanced imaging modalities such as in vitro-in vivo simulation, magnetic resonance imaging, and positron emission tomography. Establishing comprehensive criteria for the investigation of exosomal pharmacokinetic is essential, given its increasing significance in both therapy and diagnostics. To obtain a thorough understanding of exosome intake, distribution, metabolism, and excretion, molecular imaging methods are crucial. The development of industrial processes and therapeutic applications depends on the precise measurement of exosome concentration in biological samples. To ensure a seamless incorporation of exosomes into clinical practice, as their role in therapeutics grows, it is imperative to conduct a complete assessment of their pharmacokinetics. This review provides a brief on how exosome-based research is evolving and the need for pharmacokinetic consideration to realize the full potential of these promising new therapeutic approaches.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 11 122103, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
2
|
Banerjee D, Vydiam K, Vangala V, Mukherjee S. Advancement of Nanomaterials- and Biomaterials-Based Technologies for Wound Healing and Tissue Regenerative Applications. ACS APPLIED BIO MATERIALS 2025; 8:1877-1899. [PMID: 40019109 DOI: 10.1021/acsabm.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Patients and healthcare systems face significant social and financial challenges due to the increasing number of individuals with chronic external and internal wounds that fail to heal. The complexity of the healing process remains a serious health concern, despite the effectiveness of conventional wound dressings in promoting healing. Recent advancements in materials science and fabrication techniques have led to the development of innovative dressings that enhance wound healing. To further expedite the healing process, novel approaches such as nanoparticles, 3D-printed wound dressings, and biomolecule-infused dressings have emerged, along with cell-based methods. Additionally, gene therapy technologies are being harnessed to generate stem cell derivatives that are more functional, selective, and responsive than their natural counterparts. This review highlights the significant potential of biomaterials, nanoparticles, 3D bioprinting, and gene- and cell-based therapies in wound healing. However, it also underscores the necessity for further research to address the existing challenges and integrate these strategies into standard clinical practice.
Collapse
Affiliation(s)
- Durba Banerjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Kalyan Vydiam
- United Therapeutics, Manchester, New Hampshire 0310, United States
| | - Venugopal Vangala
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Mishra R, Singh TG, Bhatia R, Awasthi A. Unveiling the therapeutic journey of snail mucus in diabetic wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03657-9. [PMID: 39869187 DOI: 10.1007/s00210-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization. Additionally, in DW there is the presence of microbial load which makes the wound worse and impedes the wound healing cycle. There are several treatment strategies which have been employed by the researchers to mitigate the aforementioned challenges. However, they failed to address the multifactorial pathogenic nature of the disease. Looking at the severity of the disease researchers have explored snail mucus and its components such as achacin, allantoin, elastin, collagen, and glycosaminoglycan due to its multiple therapeutic potentials; however, glycosaminoglycan (GAGs) is very important among all because they accelerate the wound-healing process by promoting reepithelialization, vascularization, granulation, and angiogenesis at the site of injury. Despite its varied applications, the field of snail mucus in wound healing is still underexplored. The present review aims to highlight the role of snail mucus in diabetic wound healing, the advantages of snail mucus over conventional treatments, the therapeutic potential of snail mucus, and the application of snail mucus in DW. Additionally, clinical trials, patents, structural variations, and advancements in snail mucus characterization have been covered in the article.
Collapse
Affiliation(s)
- Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Yadav K, Ebenezer Gnanakani SP, Kumar Sahu K, Sucheta, Dubey A, Minz S, Raza W, Pradhan M. Unleashing the potential of natural protein based nanoparticles for the delivery of therapeutic nucleic Acid: A comprehensive review. Int J Pharm 2025; 669:125049. [PMID: 39674384 DOI: 10.1016/j.ijpharm.2024.125049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Nucleic acid-based therapeutics represent a revolutionary approach in treating genetic disorders, offering unprecedented potential for addressing pathologies at their molecular level. However, effective cellular delivery remains a critical challenge hindering their clinical implementation. While existing delivery systems, including viral vectors and lipid nanoparticles, have shown utility, they face limitations in immunogenicity, cargo capacity, and manufacturing complexity. Natural protein-based nanoparticles, derived from proteins such as albumin, ferritin, and elastin, have emerged as promising alternative delivery systems. These carriers offer distinct advantages including reduced immunogenicity, enhanced biocompatibility, and optimal biodegradation profiles. Their engineerable nature enables precise control over particle size, surface charge, and ligand conjugation, facilitating selective cellular targeting and improved pharmacokinetics. Recent technological advances have expanded the application of protein nanoparticles across various nucleic acid modalities, including mRNA, siRNA, and plasmid DNA. Extensive research has characterized these systems through rigorous in vitro and in vivo studies, advancing our understanding of their biological behavior and clinical potential. Advanced engineering methodologies have further enhanced their optimization for specific therapeutic applications. This review examines the development and potential of protein-based nanoparticles in nucleic acid delivery, highlighting their advantages and addressing current challenges. By analyzing recent advances and clinical progress, we underscore their significant potential to enhance the safety, specificity, and efficacy of nucleic acid therapeutics, potentially revolutionizing the treatment of genetic disorders.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - S Princely Ebenezer Gnanakani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Limda, Waghodia, Vadodara, Gujarat 391760, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Wasim Raza
- Central Laboratory Facility, Chhattisgarh Council of Science and Technology, Vigyan Bhawan, Raipur, Chhattisgarh, India
| | | |
Collapse
|
5
|
Vanshita, Rawal T, Bhati H, Bansal K. Harnessing the power of novel drug delivery systems for effective delivery of apigenin: an updated review. J Microencapsul 2025; 42:83-106. [PMID: 39670876 DOI: 10.1080/02652048.2024.2437375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use. Various advantages have been demonstrated by nanocarrier-based platforms in the delivery of hydrophobic drugs like apigenin to diseased tissues. Apigenin nanoformulations have been reported to have better stability, high encapsulation efficiency, prolonged circulation time, sustained release, enhanced accumulation at targeted sites and better therapeutic efficacy. An overview of the major nanocarriers based delivery including liposomes, niosomes, solid lipid nanoparticles, micelles, dendrimers etc., is described. This review sheds insight into the therapeutic effects and advanced drug delivery strategies for the delivery of apigenin.
Collapse
Affiliation(s)
- Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tanu Rawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Liu Y, Zhou M, Sun J, Yao E, Xu J, Yang G, Wu X, Xu L, Du J, Jiang X. Programmed BRD9 Degradation and Hedgehog Signaling Activation via Silk-Based Core-Shell Microneedles Promote Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404130. [PMID: 39413023 PMCID: PMC11615742 DOI: 10.1002/advs.202404130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Indexed: 10/18/2024]
Abstract
Wound healing impairment in diabetes mellitus is associated with an excessive inflammatory response and defective regeneration capability with suppressed Hedgehog (Hh) signaling. The bromodomain protein BRD9, a subunit of the non-canonical BAF chromatin-remodeling complex, is critical for macrophage inflammatory response. However, whether the epigenetic drug BRD9 degrader can attenuate the sustained inflammatory state of wounds in diabetes remains unclear. Without a bona fide immune microenvironment, Hh signaling activation fails to effectively rescue the suppressed proliferative ability of dermal fibroblasts and the vascularization of endothelial cells. Therefore, a silk-based core-shell microneedle (MN) patch is proposed to dynamically modulate the wound immune microenvironment and the regeneration process. Specifically, the BRD9 degrader released from the shell of the MNs mitigated the excessive inflammatory response in the early phase. Subsequently, the positively charged Hh signaling agonist is released from the negatively charged core of the silk fibroin nanofibers and promotes the phase transition from inflammation to regeneration, including re-epithelialization, collagen deposition, and angiogenesis. These findings suggest that the programmed silk-based core-shell MN patch is an ideal therapeutic strategy for effective skin regeneration in diabetic wounds.
Collapse
Affiliation(s)
- Yili Liu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Mingliang Zhou
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Jinrui Sun
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Enhui Yao
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Jingyi Xu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Guangzheng Yang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Xiaolin Wu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Ling Xu
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Jiahui Du
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| | - Xinquan Jiang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Engineering Research Center of Advanced Dental Technology and MaterialsShanghai200125China
| |
Collapse
|
7
|
Yadav K. Nanotechnology in diabetes Management: Revolutionizing treatment and diagnostics. J Mol Liq 2024; 414:126117. [DOI: 10.1016/j.molliq.2024.126117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Sang P, Zhao J, Yang H. The efficacy of electroacupuncture in among early diabetic patients with lower limb arteriosclerotic wounds. Int Wound J 2024; 21:e14526. [PMID: 38093499 PMCID: PMC10961040 DOI: 10.1111/iwj.14526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 03/25/2024] Open
Abstract
Diabetic foot ulcers are the prevalent complication of diabetes mellitus, frequently culminating in arteriosclerosis of the lower extremities and consequent development of chronic wounds. The effectiveness of electroacupuncture (EA) as therapeutic intervention for promoting wound healing in this particular group of patients has been comprehensively assessed in this study. A randomized controlled trial involving 380 early diabetic patients with arteriosclerotic lesions of the lower limbs was conducted. Standard wound care plus EA was administered to the treatment group, while standard wound care alone was administered to the control group. The principal outcome assessed was the reduction in lesion size following the 8-week treatment period. Pain scores, recuperation time, and quality of life (QoL) evaluations constituted secondary outcomes. In comparison to the control group, the treatment group exhibited a significantly greater reduction in wound size (p < 0.05). The treatment group exhibited significantly reduced pain scores and significantly higher QoL scores (p < 0.05). The duration of recovery did not vary substantially among the groups (p > 0.05). Electroacupuncture thus appeared to be an effective adjunctive treatment for early diabetic patients with lower limb arteriosclerotic lesions, promoting pain relief and quality of life. Additional investigation is necessary to validate these results and delve into the underlying mechanisms of action.
Collapse
Affiliation(s)
- Peng Sang
- Department of AcupunctureHeilongjiang Academy of Chinese Medicine SciencesHarbinHeilongjiangChina
| | - Jiahui Zhao
- Department of AcupunctureHeilongjiang Academy of Chinese Medicine SciencesHarbinHeilongjiangChina
| | - Hui Yang
- Department of AcupunctureHeilongjiang Academy of Chinese Medicine SciencesHarbinHeilongjiangChina
| |
Collapse
|
9
|
Wlodarczyk J, Leng A, Abadchi SN, Shababi N, Mokhtari-Esbuie F, Gheshlaghi S, Ravari MR, Pippenger EK, Afrasiabi A, Ha J, Abraham JM, Harmon JW. Transfection of hypoxia-inducible factor-1α mRNA upregulates the expression of genes encoding angiogenic growth factors. Sci Rep 2024; 14:6738. [PMID: 38509125 PMCID: PMC10954730 DOI: 10.1038/s41598-024-54941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Hypoxia-Inducible Factor-1α (HIF-1α) has presented a new direction for ischemic preconditioning of surgical flaps to promote their survival. In a previous study, we demonstrated the effectiveness of HIF-1a DNA plasmids in this application. In this study, to avoid complications associated with plasmid use, we sought to express HIF-1α through mRNA transfection and determine its biological activity by measuring the upregulation of downstream angiogenic genes. We transfected six different HIF-1a mRNAs-one predominant, three variant, and two novel mutant isoforms-into primary human dermal fibroblasts using Lipofectamine, and assessed mRNA levels using RT-qPCR. At all time points examined after transfection (3, 6, and 10 h), the levels of HIF-1α transcript were significantly higher in all HIF-1α transfected cells relative to the control (all p < 0.05, unpaired Student's T-test). Importantly, the expression of HIF-1α transcription response genes (VEGF, ANG-1, PGF, FLT1, and EDN1) was significantly higher in the cells transfected with all isoforms than with the control at six and/or ten hours post-transfection. All isoforms were transfected successfully into human fibroblast cells, resulting in the rapid upregulation of all five downstream angiogenic targets tested. These findings support the potential use of HIF-1α mRNA for protecting ischemic dermal flaps.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
- Department of General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Albert Leng
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Sanaz Nourmohammadi Abadchi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Niloufar Shababi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Farzad Mokhtari-Esbuie
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Shayan Gheshlaghi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Mohsen Rouhani Ravari
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
- Department of Surgery, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Emma K Pippenger
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Ali Afrasiabi
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - Jinny Ha
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - John M Abraham
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA
| | - John W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, 1550 Orleans Street, Baltimore, MD, 21224, USA.
| |
Collapse
|
10
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
11
|
Singh V, Bansal K, Bhati H, Bajpai M. New Insights into Pharmaceutical Nanocrystals for the Improved Topical Delivery of Therapeutics in Various Skin Disorders. Curr Pharm Biotechnol 2024; 25:1182-1198. [PMID: 37921127 DOI: 10.2174/0113892010276223231027075527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Nanotechnology has provided nanostructure-based delivery of drugs, among which nanocrystals have been investigated and explored for feasible topical drug delivery. Nanocrystals are nano-sized colloidal carriers, considered pure solid particles with a maximum drug load and a very small amount of stabilizer. The size or mean diameter of the nanocrystals is less than 1 μm and has a crystalline character. Prominent synthesis methods include the utilization of microfluidic- driven platforms as well as the milling approach, which is both adaptable and adjustable. Nanocrystals have shown a high capacity for loading drugs, utilization of negligible amounts of excipients, greater chemical stability, lower toxic effects, and ease of scale-up, as well as manufacturing. They have gained interest as drug delivery platforms, and the significantly large surface area of the skin makes it a potential approach for topical therapeutic formulations for different skin disorders including fungal and bacterial infections, psoriasis, wound healing, and skin cancers, etc. This article explores the preparation techniques, applications, and recent patents of nanocrystals for treating various skin conditions.
Collapse
Affiliation(s)
- Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
12
|
Pavlov S, Babenko N, Kumetchko M, Litvinova O, Komarchuk I. Activation of reparative processes of chronic wounds using photobiomodulation therapy (experimental study). POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:261-267. [PMID: 39007463 DOI: 10.36740/merkur202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Aim: The aim of the work was to study the ef f ect of photobiomodulation therapy on the regulation of disorders in the healing of chronic wounds at the remodeling stage using indicators of platelet aggregation activity, reactive oxygen species, platelet-derived growth factor, and interleukin-1β. PATIENTS AND METHODS Materials and Methods: The study included 3 groups of Wistar rats: intact animals and animals of the control and experimental groups, for which chronic wounds were simulated. Rats in the experimental group received photobiomodulation therapy once a day for 5 days. Wound defects of animals in the control group were fictitiously irradiated. The levels of reactive oxygen species, platelet-derived growth factor, and interleukin-1β in the blood serum of animals were studied by enzyme immunoassay. The functional activity of platelets was measured on a computerized platelet aggregation analyzer using the turbidimetric method. Histological studies were carried out. RESULTS Results: Changes in the expression of the studied indicators were found in the blood serum of animals with chronic wounds when using photobiomodulation therapy: an increase in platelet-derived growth factor concentrations, the levels of reactive oxygen species and interleukin-1β did not have statistically signif i cant differences compared to the corresponding indicators of animals in the control group. There were no significant differences in the indicators of platelet aggregation activity in the control and experimental groups of animals. CONCLUSION Conclusions: The findings suggest that photobiomodulation therapy may promote wound healing by increasing platelet-derived growth factor levels. Histological studies have shown that using photobiomodulation therapy helps reduce inflammation and better organization of collagen fibers in animals of the experimental group.
Collapse
Affiliation(s)
- Sergey Pavlov
- KHARKIV NATIONAL MEDICAL UNIVERSITY, KHARKIV, UKRAINE
| | | | | | | | | |
Collapse
|
13
|
De Francesco F, Ogawa R. From Time to Timer in Wound Healing Through the Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:1-18. [PMID: 38842786 DOI: 10.1007/5584_2024_815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hard-to-heal wounds are an important public health issue worldwide, with a significant impact on the quality of life of patients. It is estimated that approximately 1-2% of the global population suffers from difficult wounds, which can be caused by a variety of factors such as trauma, infections, chronic diseases like diabetes or obesity, or poor health conditions. Hard-to-heal wounds are often characterized by a slow and complicated healing process, which can lead to serious complications such as infections, pressure ulcers, scar tissue formation, and even amputations. These complications can have a significant impact on the mobility, autonomy, and quality of life of patients, leading to an increase in healthcare and social costs associated with wound care. The preparation of the wound bed is a key concept in the management of hard-to-heal wounds, with the aim of promoting an optimal environment for healing. The TIME (Tissue, Infection/Inflammation, Moisture, Edge) model is a systematic approach used to assess and manage wounds in a targeted and personalized way. The concept of TIMER, expanding the TIME model, further focuses on regenerative processes, paying particular attention to promoting tissue regeneration and wound healing in a more effective and comprehensive way. The new element introduced in the TIMER model is "Regeneration", which highlights the importance of activating and supporting tissue regeneration processes to promote complete and lasting wound healing. Regenerative therapies can include a wide range of approaches, including cellular therapies, growth factors, bioactive biomaterials, stem cell therapies, and growth factor therapies. These therapies aim to promote the formation of new healthy tissues, reduce inflammation, improve vascularization, and stimulate cellular proliferation to accelerate wound closure and prevent complications. Thanks to continuous progress in research and development of regenerative therapies, more and more patients suffering from difficult wounds can benefit from innovative and promising solutions to promote faster and more effective healing, improve quality of life, and reduce the risk of long-term complications.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy.
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
14
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
15
|
Oprita EI, Iosageanu A, Craciunescu O. Natural Polymeric Hydrogels Encapsulating Small Molecules for Diabetic Wound Healing. Gels 2023; 9:867. [PMID: 37998956 PMCID: PMC10671021 DOI: 10.3390/gels9110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Diabetes is a condition correlated with a high number of diagnosed chronic wounds as a result of a complex pathophysiological mechanism. Diabetic chronic wounds are characterized by disorganized and longer stages, compared to normal wound healing. Natural polymer hydrogels can act as good wound dressings due to their versatile physicochemical properties, represented mainly by high water content and good biocompatibility. Natural bioactive hydrogels are polymers loaded with bioactive compounds providing antibacterial and antioxidant properties, modulation of inflammation and adherence to wounded tissue, compared to traditional dressings, which enables promising future applications for diabetic wound healing. Natural bioactive compounds, such as polyphenols, polysaccharides and proteins have great advantages in promoting chronic wound healing in diabetes due to their antioxidant, anti-inflammatory, antimicrobial, anti-allergic and wound healing properties. The present paper aims to review the wound healing mechanisms underlining the main issues of chronic wounds and those specifically occurring in diabetes. Also, the review highlights the recent state of the art related to the effect of hydrogels enriched with natural bioactive compounds developed as biocompatible functional materials for improving diabetic-related chronic wound healing and providing novel therapeutic strategies that could prevent limb amputation and increase the quality of life in diabetic patients.
Collapse
Grants
- Program Nucleu, project no. 23020101/2023 Ministry of Research, Innovation and Digitalization, Romania
- Program 1, Development of the National R&D System, Subprogram 1.2, Institutional Performance, Projects for Excellence Financing in RDI, contract no. 2PFE/2021. Ministry of Research, Innovation and Digitalization, Romania
Collapse
Affiliation(s)
- Elena Iulia Oprita
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (O.C.)
| | | | | |
Collapse
|
16
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|