1
|
Patel AA, Shafie A, Mohamed AH, Ali SAJ, Tayeb FJ, Waggiallah HA, Ahmad I, Sheweita SA, Muzammil K, AlShahrani AM, Al Abdulmonem W. The promise of mesenchymal stromal/stem cells in erectile dysfunction treatment: a review of current insights and future directions. Stem Cell Res Ther 2025; 16:98. [PMID: 40012076 DOI: 10.1186/s13287-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Erectile dysfunction is a common and multifactorial condition that significantly impacts men's quality of life. Traditional treatments, such as phosphodiesterase type 5 inhibitors (PDE5i), often fail to provide lasting benefits, particularly in patients with underlying health conditions. In recent years, regenerative medicine, particularly stem cell therapies, has emerged as a promising alternative for managing erectile dysfunction. This review explores the potential of mesenchymal stromal/stem cells (MSCs) and their paracrine effects, including extracellular vesicles (EVs), in the treatment of erectile dysfunction. MSCs have shown remarkable potential in promoting tissue repair, reducing inflammation, and regenerating smooth muscle cells, offering therapeutic benefits in models of erectile dysfunction. Clinical trials have demonstrated positive outcomes in improving erectile function and other clinical parameters. This review highlights the promise of MSC therapy for erectile dysfunction, discusses existing challenges, and emphasizes the need for continued research to refine these therapies and improve long-term patient outcomes.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | | | - Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Salah Ahmed Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, 62561, Abha, Saudi Arabia
| | - Abdullah M AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait, King Khalid University (KKU), 62561, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Taghavi S, Keshtkar S, Abedanzadeh M, Hashemi M, Heidari R, Abolmaali SS, Dara M, Aghdaei MH, Sabegh A, Azarpira N. Exosome Loaded in Microneedle Patch Ameliorates Renal Ischemia-Reperfusion Injury in a Mouse Model. Stem Cells Int 2025; 2025:3106634. [PMID: 39845407 PMCID: PMC11753846 DOI: 10.1155/sci/3106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction: Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes. The purpose of this innovative approach is to combine MSC-Exo with microneedle patches. Method: Exosomes were isolated from MSCs, characterized, and placed in the prepared microneedle patch. Then this construct was applied to the IRI mice model. After 7 days, the gene expression of miR-34a and its targets B-cell lymphoma-2 (BCL-2) and BCL-2-associated X (BAX), along with reactive oxygen species (ROS) and lipid peroxidation (LPO) production, was investigated. Additionally, renoprotection was evaluated for measuring blood urea nitrogen (BUN) and creatinine (Cr) and histopathology detection. Results: After using microneedle patches containing exosomes, the reduction of miR-34a and BAX and enhancement of BCL-2 were observed. Moreover, treatment by this construct decreased the production of ROS, LPO, BUN, and Cr and improved tissue damage. Conclusion: The use of a microneedle patch containing exosomes is a noninvasive method that enables the release of exosomes in a slow manner. In comparison to exosome injection alone, microneedle patch-exosome treatment offers a longer and more targeted effect that improves renal IRI dysfunction and reduces tissue damage, potentially facilitating the clinical application of exosomes and improving graft survival.
Collapse
Affiliation(s)
- Samin Taghavi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Abedanzadeh
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Sabegh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Serteyn D, Storms N, Mouithys-Mickalad A, Sandersen C, Niesten A, Duysens J, Graide H, Ceusters J, Franck T. Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia-Reoxygenation, and Myeloperoxidase. Animals (Basel) 2024; 14:2681. [PMID: 39335269 PMCID: PMC11428732 DOI: 10.3390/ani14182681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Laminitis in horses is a crippling condition marked by the deterioration of the dermal-epidermal interface, leading to intense lameness and discomfort, often necessitating euthanasia. This study aimed to establish an in vitro model of laminitis using a continuous keratinocyte cell line exposed to anoxia-reoxygenation and an activated neutrophil supernatant. A significant decrease in the keratinocytes' metabolism was noted during the reoxygenation period, indicative of cellular stress. Adding muscle-derived mesenchymal stem/stromal cells during the reoxygenation demonstrated a protective effect, restoring the keratinocytes' metabolic activity. Moreover, the incubation of the keratinocytes with either an activated neutrophil supernatant or myeloperoxidase alone induced increased keratinocyte myeloperoxidase activity, which was modulated by stem cells. These findings underscore the potential of muscle-derived mesenchymal stem/stromal cells in mitigating inflammation and restoring keratinocyte metabolism, offering insights for future cell therapy research in laminitis treatment.
Collapse
Affiliation(s)
- Didier Serteyn
- Department of Equine Clinical Sciences, University of Liège, 4000 Liège, Belgium; (N.S.); (C.S.)
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Nazaré Storms
- Department of Equine Clinical Sciences, University of Liège, 4000 Liège, Belgium; (N.S.); (C.S.)
| | - Ange Mouithys-Mickalad
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Charlotte Sandersen
- Department of Equine Clinical Sciences, University of Liège, 4000 Liège, Belgium; (N.S.); (C.S.)
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Ariane Niesten
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Julien Duysens
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Hélène Graide
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Justine Ceusters
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Thierry Franck
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| |
Collapse
|
4
|
Wang J, Wang J, Lu C, Wang Y, Bi H, Zheng J, Ding X. ISL1-overexpressing BMSCs attenuate renal ischemia-reperfusion injury by suppressing apoptosis and oxidative stress through the paracrine action. Cell Mol Life Sci 2024; 81:312. [PMID: 39066917 PMCID: PMC11335236 DOI: 10.1007/s00018-024-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated. The unilateral renal IRI rat model was established to mimic clinical acute kidney injury. Rats were injected with PBS, BMSCs-Scrambled or BMSCs-ISL1 via the tail vein at the timepoint of reperfusion, and then sacrificed after 24 h of reperfusion. The administration of BMSCs-ISL1 significantly improved renal function, inhibited tubular cells apoptosis, inflammation, oxidative stress in rats. In vitro, HKC cells subjected to H2O2 stimulation were pretreated with the conditioned medium (CM) of BMSCs-Scrambled or BMSCs-ISL1. The pretreatment of ISL1-CM attenuated apoptosis and oxidative stress induced by H2O2 in HKC cells. Our proteomic data suggested that haptoglobin (Hp) was one of the secretory proteins in ISL1-CM. Subsequent experiments confirmed that Hp was the important paracrine factor from BMSCs-ISL1 that exerted anti-apoptotic and antioxidant functions. Mechanistically, Hp played a cytoprotective role via the inhibition of ERK signaling pathway, which could be abrogated by Ro 67-7476, the ERK phosphorylation agonist. The results suggested that paracrine action may be the main mechanism for BMSCs-ISL1 to exert protective effects. As an important anti-apoptotic and antioxidant factor in ISL1-CM, Hp may serve as a new therapeutic agent for treating IRI, providing new insights for overcoming the long-term adverse effects of stem cell therapy.
Collapse
Affiliation(s)
- Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Qian Z, Zhang X, Huang J, Niu X, Zhu C, Tai Z, Zhu Q, Chen Z, Zhu T, Wu G. ROS-responsive MSC-derived Exosome Mimetics Carrying MHY1485 Alleviate Renal Ischemia Reperfusion Injury through Multiple Mechanisms. ACS OMEGA 2024; 9:24853-24863. [PMID: 38882096 PMCID: PMC11170644 DOI: 10.1021/acsomega.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Renal ischemia reperfusion (IR) injury is a prevalent inflammatory nephropathy in surgeries such as renal transplantation or partial nephrectomy, damaging renal function through inducing inflammation and cell death in renal tubules. Mesenchymal stromal/stem cell (MSC)-based therapies, common treatments to attenuate inflammation in IR diseases, fail to exhibit satisfying effects on cell death in renal IR. In this study, we prepared MSC-derived exosome mimetics (EMs) carrying the mammalian target of the rapamycin (mTOR) agonist to protect kidneys in proinflammatory environments under IR conditions. The thioketal-modified EMs carried the mTOR agonist and bioactive molecules in MSCs and responsively released them in kidney IR areas. MSC-derived EMs and mTOR agonists protected kidneys synergistically from IR through alleviating inflammation, apoptosis, and ferroptosis. The current study indicates that MSC-TK-MHY1485 EMs (MTM-EM) are promising therapeutic biomaterials for renal IR injury.
Collapse
Affiliation(s)
- Zhiyu Qian
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Jiahua Huang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Xinhao Niu
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| |
Collapse
|
6
|
Calligaris M, Zito G, Busà R, Bulati M, Iannolo G, Gallo A, Carreca AP, Cuscino N, Castelbuono S, Carcione C, Centi C, Amico G, Bertani A, Chinnici CM, Conaldi PG, Scilabra SD, Miceli V. Proteomic analysis and functional validation reveal distinct therapeutic capabilities related to priming of mesenchymal stromal/stem cells with IFN-γ and hypoxia: potential implications for their clinical use. Front Cell Dev Biol 2024; 12:1385712. [PMID: 38882056 PMCID: PMC11179434 DOI: 10.3389/fcell.2024.1385712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are a heterogeneous population of multipotent cells that can be obtained from various tissues, such as dental pulp, adipose tissue, bone marrow and placenta. MSCs have gained importance in the field of regenerative medicine because of their promising role in cell therapy and their regulatory abilities in tissue repair and regeneration. However, a better characterization of these cells and their products is necessary to further potentiate their clinical application. In this study, we used unbiased high-resolution mass spectrometry-based proteomic analysis to investigate the impact of distinct priming strategies, such as hypoxia and IFN-γ treatment, on the composition and therapeutic functionality of the secretome produced by MSCs derived from the amniotic membrane of the human placenta (hAMSCs). Our investigation revealed that both types of priming improved the therapeutic efficacy of hAMSCs, and these improvements were related to the secretion of functional factors present in the conditioned medium (CM) and exosomes (EXOs), which play crucial roles in mediating the paracrine effects of MSCs. In particular, hypoxia was able to induce a pro-angiogenic, innate immune response-activating, and tissue-regenerative hAMSC phenotype, as highlighted by the elevated production of regulatory factors such as VEGFA, PDGFRB, ANGPTL4, ENG, GRO-γ, IL8, and GRO-α. IFN-γ priming, instead, led to an immunosuppressive profile in hAMSCs, as indicated by increased levels of TGFB1, ANXA1, THBS1, HOMER2, GRN, TOLLIP and MCP-1. Functional assays validated the increased angiogenic properties of hypoxic hAMSCs and the enhanced immunosuppressive activity of IFN-γ-treated hAMSCs. This study extends beyond the direct priming effects on hAMSCs, demonstrating that hypoxia and IFN-γ can influence the functional characteristics of hAMSC-derived secretomes, which, in turn, orchestrate the production of functional factors by peripheral blood cells. This research provides valuable insights into the optimization of MSC-based therapies by systematically assessing and comparing the priming type-specific functional features of hAMSCs. These findings highlight new strategies for enhancing the therapeutic efficacy of MSCs, particularly in the context of multifactorial diseases, paving the way for the use of hAMSC-derived products in clinical practice.
Collapse
Affiliation(s)
- Matteo Calligaris
- Proteomics Group, Ri.MED Foundation c/o IRCCS ISMETT, Palermo, Italy
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Rosalia Busà
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Alessia Gallo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Salvatore Castelbuono
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Cinzia Maria Chinnici
- Regenerative Medicine and Immunotherapy Area, Ri.MED Foundation c/o IRCCS ISMETT, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| |
Collapse
|
7
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
9
|
Miceli V. Use of priming strategies to advance the clinical application of mesenchymal stromal/stem cell-based therapy. World J Stem Cells 2024; 16:7-18. [PMID: 38292438 PMCID: PMC10824041 DOI: 10.4252/wjsc.v16.i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential. MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs. These cells are characterized by easy accessibility, few ethical concerns, and adaptability to in vitro cultures, making them a valuable resource for cell therapy in several clinical conditions. Over the years, it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors, including cytokines, growth factors, and exosomes (EXOs), which modulate the tissue microenvironment and facilitate repair and regeneration processes. Consequently, MSC-derived products, such as conditioned media and EXOs, are now being extensively evaluated for their potential medical applications, offering advantages over the long-term use of whole MSCs. However, the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods. To address these concerns and to enhance MSC therapeutic potential, researchers have explored many priming strategies, including exposure to inflammatory molecules, hypoxic conditions, and three-dimensional culture techniques. These approaches have optimized MSC secretion of functional factors, empowering them with enhanced immunomodulatory, angiogenic, and regenerative properties tailored to specific medical conditions. In fact, various priming strategies show promise in the treatment of numerous diseases, from immune-related disorders to acute injuries and cancer. Currently, in order to exploit the full therapeutic potential of MSC therapy, the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders. In other words, to unlock the complete potential of MSCs in regenerative medicine, it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione, Palermo 90127, Italy.
| |
Collapse
|
10
|
Faria J, Calcat-I-Cervera S, Skovronova R, Broeksma BC, Berends AJ, Zaal EA, Bussolati B, O'Brien T, Mihăilă SM, Masereeuw R. Mesenchymal stromal cells secretome restores bioenergetic and redox homeostasis in human proximal tubule cells after ischemic injury. Stem Cell Res Ther 2023; 14:353. [PMID: 38072933 PMCID: PMC10712181 DOI: 10.1186/s13287-023-03563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ischemia/reperfusion injury is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal stromal cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy; however, their full potential in treating AKI remains unknown. METHODS In this study, we employed an in vitro model of chemically induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow, and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential), and overall cell metabolism by metabolomics. RESULTS Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction, and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites. CONCLUSION Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sandra Calcat-I-Cervera
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Renata Skovronova
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Alinda J Berends
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Silvia M Mihăilă
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Bulati M, Gallo A, Zito G, Busà R, Iannolo G, Cuscino N, Castelbuono S, Carcione C, Centi C, Martucci G, Bertani A, Baiamonte MP, Chinnici CM, Conaldi PG, Miceli V. 3D Culture and Interferon-γ Priming Modulates Characteristics of Mesenchymal Stromal/Stem Cells by Modifying the Expression of Both Intracellular and Exosomal microRNAs. BIOLOGY 2023; 12:1063. [PMID: 37626949 PMCID: PMC10451847 DOI: 10.3390/biology12081063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have emerged as a therapeutic tool in regenerative medicine. Recent studies have shown that exosome (EXO)-derived microRNAs (miRNAs) play a crucial role in mediating MSC functions. Additionally, intracellular miRNAs have been found to regulate MSC therapeutic capacities. However, the molecular mechanisms underlying miRNA-mediated MSC effects are not fully understood. We used 3D culture and IFN-γ to prime/enhance the MSC therapeutic effects in terms of functional miRNAs. After priming, our analysis revealed stable variations in intracellular miRNA among the MSC biological replicates. Conversely, a significant variability of miRNA was observed among EXOs released from biological replicates of the priming treatment. For each priming, we observed distinct miRNA expression profiles between the MSCs and their EXOs. Moreover, in both types of priming, gene ontology (GO) analysis of deregulated miRNAs highlighted their involvement in tissue repair/regeneration pathways. In particular, the 3D culture enhanced angiogenic properties in both MSCs and EXOs, while IFN-γ treatment enriched miRNAs associated with immunomodulatory pathways. These findings suggest that 3D culture and IFN-γ treatment are promising strategies for enhancing the therapeutic potential of MSCs by modulating miRNA expression. Additionally, the identified miRNAs may contribute to understanding the molecular mechanisms underlying the miRNA-mediated therapeutic effects of MSCs.
Collapse
Affiliation(s)
- Matteo Bulati
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Alessia Gallo
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Giovanni Zito
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Rosalia Busà
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Gioacchin Iannolo
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Nicola Cuscino
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Salvatore Castelbuono
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | | | - Claudio Centi
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Maria Pia Baiamonte
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | | | - Pier Giulio Conaldi
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Vitale Miceli
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| |
Collapse
|
13
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|