1
|
Martin-Loeches I, Pereira JG, Teoh TK, Barlow G, Dortet L, Carrol ED, Olgemöller U, Boyd SE, Textoris J. Molecular antimicrobial susceptibility testing in sepsis. Future Microbiol 2024; 19:61-72. [PMID: 38180334 DOI: 10.2217/fmb-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 01/06/2024] Open
Abstract
Rapidly detecting and identifying pathogens is crucial for appropriate antimicrobial therapy in patients with sepsis. Conventional diagnostic methods have been a great asset to medicine, though they are time consuming and labor intensive. This work will enable healthcare professionals to understand the bacterial community better and enhance their diagnostic capacity by using novel molecular methods that make obtaining quicker, more precise results possible. The authors discuss and critically assess the merits and drawbacks of molecular testing and the added value of these tests, including the shift turnaround time, the implication for clinicians' decisions, gaps in knowledge, future research directions and novel insights or innovations. The field of antimicrobial molecular testing has seen several novel insights and innovations to improve the diagnosis and management of infectious diseases.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, D08 NHY1, Dublin, Ireland
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Ciberes, 08036 Barcelona, Spain
| | | | - Tee Keat Teoh
- Department of Clinical Microbiology, St James' Hospital, Dublin, Ireland
| | - Gavin Barlow
- York Biomedical Research Institute, University of York and Hull York Medical School, UK
- Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antimicrobial Resistance, France
| | - Enitan D Carrol
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
- Alder Hey Children's Hospital, Department of Infectious Diseases, Liverpool, UK
| | - Ulrike Olgemöller
- Department of Cardiology and Pneumology, University of Goettingen, Goettingen, Germany
| | - Sara E Boyd
- St George's University Hospital NHS Foundation Trust, London, UK
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Gaudet A, Kreitmann L, Nseir S. ICU-Acquired Colonization and Infection Related to Multidrug-Resistant Bacteria in COVID-19 Patients: A Narrative Review. Antibiotics (Basel) 2023; 12:1464. [PMID: 37760760 PMCID: PMC10525572 DOI: 10.3390/antibiotics12091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
A large proportion of ICU-acquired infections are related to multidrug-resistant bacteria (MDR). Infections caused by these bacteria are associated with increased mortality, and prolonged duration of mechanical ventilation and ICU stay. The aim of this narrative review is to report on the association between COVID-19 and ICU-acquired colonization or infection related to MDR bacteria. Although a huge amount of literature is available on COVID-19 and MDR bacteria, only a few clinical trials have properly evaluated the association between them using a non-COVID-19 control group and accurate design and statistical methods. The results of these studies suggest that COVID-19 patients are at a similar risk of ICU-acquired MDR colonization compared to non-COVID-19 controls. However, a higher risk of ICU-acquired infection related to MDR bacteria has been reported in several studies, mainly ventilator-associated pneumonia and bloodstream infection. Several potential explanations could be provided for the high incidence of ICU-acquired infections related to MDR. Immunomodulatory treatments, such as corticosteroids, JAK2 inhibitors, and IL-6 receptor antagonist, might play a role in the pathogenesis of these infections. Additionally, a longer stay in the ICU was reported in COVID-19 patients, resulting in higher exposure to well-known risk factors for ICU-acquired MDR infections, such as invasive procedures and antimicrobial treatment. Another possible explanation is the surge during successive COVID-19 waves, with excessive workload and low compliance with preventive measures. Further studies should evaluate the evolution of the incidence of ICU-acquired infections related to MDR bacteria, given the change in COVID-19 patient profiles. A better understanding of the immune status of critically ill COVID-19 patients is required to move to personalized treatment and reduce the risk of ICU-acquired infections. The role of specific preventive measures, such as targeted immunomodulation, should be investigated.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- CNRS, Inserm U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK;
- Department of Intensive Care Medicine, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Saad Nseir
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
| |
Collapse
|
3
|
Resende ADS, de Oliveira YLM, de Franca MNF, Magalhães LS, Correa CB, Fukutani KF, Lipscomb MW, de Moura TR. Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype. Biomedicines 2023; 11:2116. [PMID: 37626613 PMCID: PMC10452870 DOI: 10.3390/biomedicines11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity alters the capacity of effective immune responses in infections. To further address this phenomenon in the context of COVID-19, this study investigated how the immunophenotype of leukocytes was altered in individuals with obesity in severe COVID-19. This cross-sectional study enrolled 27 ICU COVID-19 patients (67% women, 56.33 ± 19.55 years) that were assigned to obese (BMI ≥ 30 kg/m2, n = 9) or non-obese (BMI < 30kg/m2, n = 18) groups. Monocytes, NK, and both Low-Density (LD) and High-Density (HD) neutrophils were isolated from peripheral blood samples, and surface receptors' frequency and expression patterns were analyzed by flow cytometry. Clinical status and biochemical data were additionally evaluated. The frequency of monocytes was negatively correlated with BMI, while NK cells and HD neutrophils were positively associated (p < 0.05). Patients with obesity showed a significant reduction of monocytes, and these cells expressed high levels of PD-L1 (p < 0.05). A higher frequency of NK cells and increased expression of TREM-1+ on HD neutrophils were detected in obese patients (p < 0.05). The expression of receptors related to antigen-presentation, phagocytosis, chemotaxis, inflammation and suppression were strongly correlated with clinical markers only in obese patients (p < 0.05). Collectively, these outcomes revealed that obesity differentially affected, and largely depressed, innate immune response in severe COVID-19.
Collapse
Affiliation(s)
- Ayane de Sá Resende
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Yrna Lorena Matos de Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Mariana Nobre Farias de Franca
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Lucas Sousa Magalhães
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
- Department of Parasitology and Pathology, ICBS, Federal University of Alagoas, Maceio 57072-900, Alagoas, Brazil
| | - Cristiane Bani Correa
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristovao 49100-000, Sergipe, Brazil
| | - Kiyoshi Ferreira Fukutani
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | | | - Tatiana Rodrigues de Moura
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| |
Collapse
|