1
|
Henry Dusim GA, Muhamad F, Lai KW. Enhancing Calcium Phosphate Cements: A review of Bacterial Cellulose (BC) and other Biopolymer Reinforcements for Biomedical Applications. BIOMATERIALS ADVANCES 2025; 172:214245. [PMID: 40054229 DOI: 10.1016/j.bioadv.2025.214245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Calcium phosphate cements (CPCs) are renowned for their biocompatibility and osteoconductivity, making them ideal for bone tissue engineering. However, their brittleness and low tensile strength limit their use in load-bearing applications. Bacterial cellulose (BC) has emerged as a promising reinforcement material due to its high tensile strength, biocompatibility, and biodegradability. The incorporation of 2 wt% BC into CPCs increased compressive strength from 5 MPa to 12 MPa, representing a 2.4-fold enhancement, while also improving toughness and promoting cellular interactions through its nanofibrillar structure. Additionally, hybrid composites combining BC with collagen, chitosan, or polycaprolactone (PCL) exhibit synergistic effects, further enhancing mechanical properties and biodegradability. These advancements highlight the potential of BC-reinforced CPCs for clinical applications in bone repair and regeneration. Despite these improvements, limited research addresses tensile and flexural properties, which are critical for load-bearing applications, as well as the effects of BC on injectability and setting time for minimally invasive procedures. Emerging innovations, such as electroactive BC-reinforced CPCs for stimulating bone healing, hold significant potential but remain underexplored. Future research should focus on optimising mechanical properties, validating clinical performance, and developing hybrid formulations to expand their use in load-bearing bone repairs.
Collapse
Affiliation(s)
- Grace Anabela Henry Dusim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Ghasempour A, Naderi Allaf MR, Charoghdoozi K, Dehghan H, Mahmoodabadi S, Bazrgaran A, Savoji H, Sedighi M. Stimuli-responsive carrageenan-based biomaterials for biomedical applications. Int J Biol Macromol 2025; 291:138920. [PMID: 39706405 DOI: 10.1016/j.ijbiomac.2024.138920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Carrageenan-based biomaterials have attracted considerable attention in recent years due to their unique biological properties, including their biodegradability, compatibility, and lack of adverse effects. These biomaterials exhibit a variety of beneficial properties, such as antiviral, antitumor, and immunomodulatory effects, which set them apart from other polysaccharides. Stimuli-responsive carrageenan-based biomaterials have attracted particular attention due to their unique properties, such as reducing systemic toxicity and controlling drug release. In this review, a comprehensive investigation of stimuli-responsive carrageenan-based biomaterials was conducted under the influence of various stimuli such as pH, electric field, magnetic field, temperature, light, and ions. These structures exhibited good stimulus-responsive properties and involved corresponding physical and chemical changes, such as changes in swelling ratio and gelling power among others. The biomedical application of carrageenan-based stimuli-responsive biomaterials in the field of tissue engineering, anticancer, antibacterial, and food monitoring has been investigated, showing the great potential of these structures. Although there are promising developments in the design and use of stimuli-responsive carrageenan-based biomaterials, further research is advisable to further investigate their potential applications, particularly in animal models. Extensive studies are needed to investigate the benefits and limitations of these materials to ensure their safety and effective use in biomedical applications.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Naderi Allaf
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Bazrgaran
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada; Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada.
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
3
|
Hesaraki S, Saba G, Shahrezaee M, Nezafati N, Orshesh Z, Roshanfar F, Borhan S, Glasmacher B, Makvandi P, Xu Y. Reinforcing β-tricalcium phosphate scaffolds for potential applications in bone tissue engineering: impact of functionalized multi-walled carbon nanotubes. Sci Rep 2024; 14:19055. [PMID: 39154029 PMCID: PMC11330522 DOI: 10.1038/s41598-024-68419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Beta-tricalcium phosphate (β-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, β-TCP scaffolds containing varying concentrations (0.25-1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of β-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated β-TCP suspensions exhibited faster structural recovery compared to pure β-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of β-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified β-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.
Collapse
Affiliation(s)
- Saeed Hesaraki
- Biomaterials Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Alborz, Iran.
| | - Golshan Saba
- Biomaterials Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Alborz, Iran
| | | | - Nader Nezafati
- Biomaterials Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Alborz, Iran
| | - Ziba Orshesh
- Department of Materials Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Fahimeh Roshanfar
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823, Garbsen, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Shokoufeh Borhan
- Department of Materials, Chemical and Polymer Engineering, Buein Zahra Technical University, 34518-66391, Buein Zahra, Qazvin, Iran
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823, Garbsen, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
- Centre of Research Impact and Outreach, Chitkara University, Rajpura, Punjab, 140417, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
| | - Yi Xu
- NanoBioMed Group, Department of Science & Technology, Department of Urology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China.
| |
Collapse
|
4
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A, Roshanfar F, Glasmacher B, Heinemann S, Xu Y, Makvandi P. Antioxidant flavonoid-loaded nano-bioactive glass bone paste: in vitro apatite formation and flow behavior. NANOSCALE ADVANCES 2024; 6:1011-1022. [PMID: 38298585 PMCID: PMC10825906 DOI: 10.1039/d3na00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Non-cement pastes in the form of injectable materials have gained considerable attention in non-invasive regenerative medicine. Different osteoconductive bioceramics have been used as the solid phase of these bone pastes. Mesoporous bioactive glass can be used as an alternative bioceramic for paste preparation because of its osteogenic qualities. Plant-derived osteogenic agents can also be used in paste formulation to improve osteogenesis; however, their side effects on physical and physicochemical properties should be investigated. In this study, nano-bioactive glass powder was synthesized by a sol-gel method, loaded with different amounts of quercetin (0, 100, 150, and 200 μM), an antioxidant flavonoid with osteogenesis capacity. The loaded powder was then homogenized with a mixture of hyaluronic acid and sodium alginate solution to form a paste. We subsequently evaluated the rheological behavior, injectability, washout resistance, and in vitro bioactivity of the quercetin-loaded pastes. The washout resistance was found to be more than 96% after 14 days of immersion in simulated body fluid (SBF) as well as tris-buffered and citric acid-buffered solutions at 25 °C and 37 °C. All pastes exhibited viscoelastic behavior, in which the elastic modulus exceeded the viscous modulus. The pastes displayed shear-thinning behavior, in which viscosity was more influenced by angular frequency when the quercetin content increased. Results indicated that injectability was much improved using quercetin and the injection force was in the range 20-150 N. Following 14 days of SBF soaking, the formation of a nano-structured apatite phase on the surfaces of quercetin-loaded pastes was confirmed through scanning electron microscopy, X-ray diffractometry, and Fourier-transform infrared spectroscopy. Overall, quercetin, an antioxidant flavonoid osteogenic agent, can be loaded onto the nano-bioactive glass/hyaluronic acid/sodium alginate paste system to enhance injectability, rheological properties, and bioactivity.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | - Fahimeh Roshanfar
- Institute for Multiphase Processes (IMP), Leibniz University Hannover 30823 Garbsen Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) 30625 Hannover Germany
| | - Brigit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover 30823 Garbsen Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) 30625 Hannover Germany
| | | | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital 324000 Quzhou Zhejiang China
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura-140401 Punjab India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University Chennai 600077 India
| |
Collapse
|
5
|
Varga M, Kresakova L, Danko J, Vdoviakova K, Humenik F, Rusnak P, Giretova M, Spakovska T, Andrejcakova Z, Kadasi M, Vrzgula M, Criepokova Z, Ivaskova S, Korim F, Medvecky L. Tetracalcium Phosphate Biocement Hardened with a Mixture of Phytic Acid-Phytase in the Healing Process of Osteochondral Defects in Sheep. Int J Mol Sci 2023; 24:15690. [PMID: 37958674 PMCID: PMC10647259 DOI: 10.3390/ijms242115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaline articular cartilage has unique physiological, biological, and biomechanical properties with very limited self-healing ability, which makes the process of cartilage regeneration extremely difficult. Therefore, research is currently focused on finding new and potentially better treatment options. The main objective of this in vivo study was to evaluate a novel biocement CX consisting of tetracalcium phosphate-monetit biocement hardened with a phytic acid-phytase mixture for the regeneration of osteochondral defects in sheep. The results were compared with tetracalcium phosphate-monetit biocement with classic fast-setting cement systems and untreated defects. After 6 months, the animals were sacrificed, and the samples were evaluated using macroscopic and histologic methods as well as X-ray, CT, and MR-imaging techniques. In contrast to the formation of fibrous or fibrocartilaginous tissue on the untreated side, treatment with biocements resulted in the formation of tissue with a dominant hyaline cartilage structure, although fine fibres were present (p < 0.001). There were no signs of pathomorphological changes or inflammation. Continuous formation of subchondral bone and hyaline cartilage layers was present even though residual biocement was observed in the trabecular bone. We consider biocement CX to be highly biocompatible and suitable for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Maros Varga
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (P.R.); (T.S.)
| | - Lenka Kresakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Jan Danko
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Katarina Vdoviakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Filip Humenik
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Pavol Rusnak
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (P.R.); (T.S.)
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (M.G.); (L.M.)
| | - Tatiana Spakovska
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (P.R.); (T.S.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Marian Kadasi
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Marko Vrzgula
- Department of Anatomy, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia;
| | - Zuzana Criepokova
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Sonja Ivaskova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Filip Korim
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (M.G.); (L.M.)
| |
Collapse
|