1
|
de Oliveira THC, Gonçalves GKN. Liver ischemia reperfusion injury: Mechanisms, cellular pathways, and therapeutic approaches. Int Immunopharmacol 2025; 150:114299. [PMID: 39961215 DOI: 10.1016/j.intimp.2025.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Liver ischemia-reperfusion injury (LIRI) is a critical challenge in liver transplantation, resection, and trauma surgeries, leading to significant hepatic damage due to oxidative stress, inflammation, and mitochondrial dysfunction. This review explores the cellular and molecular mechanisms underlying LIRI, focusing on ATP depletion, mitochondrial dysfunction, and the involvement of reactive oxygen species (ROS). Inflammatory pathways, including the activation of nuclear factor-kappa B (NF-κB) and the NLRP3 inflammasome, as well as pro-inflammatory cytokines such as TNF-α and IL-1β, play a crucial role in exacerbating tissue damage. Various types of cell death, including necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis and cuproptosis are also discussed. Therapeutic interventions targeting these mechanisms, such as antioxidants, anti-inflammatories, mitochondrial protectors, and signaling modulators, have shown promise in pre-clinical studies. However, translating these findings into clinical practice faces challenges due to the limitations of animal models and the complexity of human responses. Emerging therapies, such as RNA-based treatments, genetic editing, and stem cell therapies, offer potential breakthroughs in LIRI management. This review highlights the need for further research and the development of innovative therapeutic approaches to improve clinical outcomes.
Collapse
|
2
|
Fang H, Xu M, Zhang J, Qin H, Tang H, He Y, Guo W. JuA alleviates liver ischemia-reperfusion injury by activating AKT/NRF2/HO-1 pathways. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167496. [PMID: 39237046 DOI: 10.1016/j.bbadis.2024.167496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Liver ischemia-reperfusion (I/R) injury is a detrimental complication of organ transplantation, shock, and sepsis. However, the available drugs to mitigate I/R injury remain limited. Jujuboside A (JuA) is renowned for its antioxidant, anti-inflammatory, and anti-apoptotic properties; nevertheless, its potential in liver I/R injury remains unknown. Thus, this study aimed to explore the role and underlying mechanisms of JuA in liver I/R injury. Mouse models of I/R and AML12 cell models of hypoxia/reoxygenation (H/R) were constructed. Haematoxylin and eosin staining, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection, and cell viability analysis were used to assess liver injury. To evaluate oxidative stress, inflammation, apoptosis, and mitochondrial damage, immunofluorescence staining, transmission electron microscopy analysis, enzyme-linked immunosorbent assay, and flow cytometry were conducted. Moreover, molecular docking techniques and western blot were employed to identify downstream target molecules and pathways affected by JuA. The results showed that JuA pretreatment effectively attenuated liver necrosis and ALT and AST level elevations induced by I/R while enhancing AML12 cell viability following H/R. Furthermore, JuA pretreatment suppressed oxidative stress triggered by I/R and H/R, thereby inhibiting the level of pro-inflammatory factors and NLRP3 inflammasome activation. Notably, JuA pretreatment alleviated mitochondrial damage and apoptosis. Mechanistically, JuA pretreatment resulted in the activation of the AKT/NRF2/HO-1 signalling pathways, whereas MK2206, the inhibitor of AKT, partially reversed the hepatoprotective effects of JuA during liver I/R. Collectively, our findings illustrated that JuA mitigated oxidative stress, inflammation, apoptosis, and mitochondrial damage by facilitating the AKT/NRF2/HO-1 signalling pathway, thereby alleviating liver I/R injury.
Collapse
Affiliation(s)
- Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hong Qin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Tang
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China; Department of Henan Key Laboratory of Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Henan Key Laboratory of Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China; Department of Henan Key Laboratory of Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Ge X, Gu Y, Wang W, Guo W, Wang P, Du P. Corynoline alleviates hepatic ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation through enhancing Nrf2/HO-1 signaling. Inflamm Res 2024; 73:2069-2085. [PMID: 39294398 DOI: 10.1007/s00011-024-01949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Corynoline has displayed pharmacological effects in reducing oxidative stress and inflammatory responses in many disorders. However, its effects on hepatic ischemia-reperfusion (I/R) injury remain unclear. This study aimed to investigate the protective effects of corynoline against hepatic I/R injury and the underlying mechanisms. METHODS Rat models with hepatic I/R injury and BRL-3A cell models with hypoxia/reoxygenation (H/R) insult were constructed. Models were pretreated with corynoline and/or other inhibitors for functional and mechanistic examination. RESULTS Corynoline pretreatment effectively mitigated hepatic I/R injury verified by reduced serum transaminase levels, improved histological damage scores, and decreased apoptosis rates. Additionally, corynoline pretreatment significantly inhibited I/R-triggered oxidative stress and inflammatory responses, as indicated by enhanced mitochondrial function, reduced levels of ROS and MDA, reduced neutrophil infiltration and suppressed proinflammatory cytokine release. In vitro experiments further showed that corynoline pretreatment increased cellular viability, decreased LDH activity, reduced cellular apoptosis, and inhibited oxidative stress and inflammatory injury in H/R-induced BRL-3A cells. Mechanistically, corynoline significantly increased Nrf2 nuclear translocation and expression levels of its target gene, HO-1. It also blocked NLRP3 inflammasome activation both in vivo and in vitro. Furthermore, pretreatment with Nrf2 inhibitor ML-385 counteracted the protective effect of corynoline on hepatic I/R injury. Ultimately, in vitro studies revealed that the NLRP3 activator nigericin could also nullified the protective effects of corynoline in BRL-3A cells, but had minimal impact on Nrf2 nuclear translocation. CONCLUSIONS Corynoline can exert protective effects against hepatic I/R injury by inhibiting oxidative stress, inflammatory responses, and apoptosis. These effects may be associated with inhibiting ROS-induced NLRP3 inflammasome activation by enhancing Nrf2/HO-1 signaling. These data provide new understanding about the mechanism of corynoline action, suggesting it is a potential drug applied for the treatment and prevention of hepatic I/R injury.
Collapse
Affiliation(s)
- Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yue Gu
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan Province, China
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wendong Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenzhi Guo
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Panliang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan Province, China.
| | - Peng Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Galvis-Pedraza M, Beumeler LFE, van der Slikke EC, Boerma EC, van Zutphen T. Mitochondrial DNA in plasma and long-term physical recovery of critically ill patients: an observational study. Intensive Care Med Exp 2024; 12:99. [PMID: 39505786 PMCID: PMC11541963 DOI: 10.1186/s40635-024-00690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Post-intensive care syndrome (PICS) poses a notable public health concern, with survivors of critical illness experiencing long-term physical, psychological, and cognitive challenges. Mitochondrial dysfunction has gained attention for its potential involvement in PICS. However, the long-term impact of mitochondrial status on patient recovery remains uncertain. A single-centre retrospective analysis was conducted in Leeuwarden, the Netherlands, between May and November 2019, within a mixed ICU survivor cohort. Patients were assessed for mitochondrial markers (mtDNA damage represented by the presence of mtDNA fragmentation and mitochondrial DNA levels evaluated by the ratio of mtDNA and nuclear DNA), clinical factors, and long-term outcomes measured by the physical functioning (PF) domain of health-related quality of life. RESULTS A total of 43 patients were included in this study divided into recovery and non-recovery groups based on age-adjusted PF scores at 12 months post-ICU. Nineteen patients scored below these thresholds. No significant differences in mitochondrial markers between groups were identified. Furthermore, no significant correlations were found between mtDNA levels and mtDNA damage at baseline and 12 months with PF scores. However, mtDNA levels decreased over time in the recovery (p-value < < 0.01) and non-recovery groups (p-value < 0.01). CONCLUSION No significant correlation was found between mitochondrial markers and physical functioning scores. This study underscores the multifactorial nature of PICS and the need for a comprehensive understanding of its metabolic and cellular components. While mitochondrial markers may play a role in PICS, they operate within a framework influenced by various factors. This exploratory study serves as a foundation for future investigations aimed at developing targeted interventions to enhance the quality of life for ICU survivors grappling with PICS.
Collapse
Affiliation(s)
- Maryory Galvis-Pedraza
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands.
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands.
| | - Lise F E Beumeler
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
- Research Group Digital Innovation in Healthcare and Social Work, NHL Stenden University of Applied Sciences, Leeuwarden, The Netherlands
| | - Elisabeth C van der Slikke
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Christiaan Boerma
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Tim van Zutphen
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| |
Collapse
|
5
|
Guo L, Yang Q, Zhu J, Li J. REGγ deficiency ameliorates hepatic ischemia and reperfusion injury in a mitochondrial p66shc dependent manner in mice. Transl Gastroenterol Hepatol 2024; 9:62. [PMID: 39503032 PMCID: PMC11535816 DOI: 10.21037/tgh-24-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 11/08/2024] Open
Abstract
Background Hepatic ischemia and reperfusion (I/R) injury is a common problem faced by patients undergoing clinical liver transplantation and hepatectomy, but the specific mechanism of liver I/R injury has not been fully elucidated. The protein degradation complex 11S proteasome is involved in apoptosis, proliferation and cell cycle regulation by regulating the 11S proteasome regulatory complex (REG)γ. The main objective of this study is to explore the role and specific mechanism of REGγ in liver I/R. Methods By constructing a model of in vivo hepatic I/R injury in mice and a model of hypoxia and reoxygenation (H/R) in isolated hepatocytes. First, the REGγ expression were detected during hepatic I/R in mice. Second, to investigate the effects of REGγ knockout (KO) on liver necrosis, inflammatory response, apoptosis and mitochondrial function. Finally, mouse liver Src homology collagen (p66shc) mitochondrial translocation was detected. Results The expression of REGγ was up-regulated during hepatic I/R. REGγ KO had significantly reduced liver tissue infarct size, liver transaminases, inflammatory cells infiltration, inflammatory cytokine and activation of nuclear factor kappa-B (NF-κB) signaling pathway and cell apoptosis. REGγ KO had significantly alleviated the mitochondrial damage, decreased the up-regulated level of cytochrome C, reactive oxygen species (ROS). REGγ KO had significantly reduced p66shc mitochondrial translocation in mice. Conclusions The experimental results of this study indicated that REGγ has an important role in preventing liver I/R injury and may play a role through the mitochondrial p66shc signaling pathway.
Collapse
Affiliation(s)
- Long Guo
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
7
|
Tohme C, Haykal T, Yang R, Austin TJ, Loughran P, Geller DA, Simmons RL, Tohme S, Yazdani HO. ZLN005, a PGC-1α Activator, Protects the Liver against Ischemia-Reperfusion Injury and the Progression of Hepatic Metastases. Cells 2024; 13:1448. [PMID: 39273020 PMCID: PMC11393917 DOI: 10.3390/cells13171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Exercise can promote sustainable protection against cold and warm liver ischemia-reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. METHODS Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. RESULTS ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. CONCLUSIONS Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases.
Collapse
Affiliation(s)
- Celine Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Tony Haykal
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Ruiqi Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Taylor J. Austin
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| |
Collapse
|
8
|
Gao L, Li YJ, Zhao JM, Liao YX, Qin MC, Li JJ, Shi H, Wong NK, Lyu ZP, Shen JG. Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine. Chin J Integr Med 2024:10.1007/s11655-024-3810-9. [PMID: 38941044 DOI: 10.1007/s11655-024-3810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 06/29/2024]
Abstract
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Collapse
Affiliation(s)
- Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Jia Li
- The First Affiliated Hospital/the First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Min Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Xin Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Chen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Jie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Nai-Kei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, the Second Affiliated Hospital, Shenzhen University, Shenzhen, Guangdong Province, 518112, China
| | - Zhi-Ping Lyu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Gang Shen
- School of Chinese Medicine, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
10
|
Xiao F, Huang G, Yuan G, Li S, Wang Y, Tan Z, Liu Z, Tomlinson S, He S, Ouyang G, Zeng Y. Identification and validation of potential diagnostic signature and immune cell infiltration for HIRI based on cuproptosis-related genes through bioinformatics analysis and machine learning. Front Immunol 2024; 15:1372441. [PMID: 38690269 PMCID: PMC11058647 DOI: 10.3389/fimmu.2024.1372441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND AIMS Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI). METHODS The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes. RESULTS Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues. CONCLUSION Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Shuangjiang Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhi Tan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
11
|
Chullo G, Panisello-Rosello A, Marquez N, Colmenero J, Brunet M, Pera M, Rosello-Catafau J, Bataller R, García-Valdecasas JC, Fundora Y. Focusing on Ischemic Reperfusion Injury in the New Era of Dynamic Machine Perfusion in Liver Transplantation. Int J Mol Sci 2024; 25:1117. [PMID: 38256190 PMCID: PMC10816079 DOI: 10.3390/ijms25021117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Transplant indications have been progressively increasing, with a huge discrepancy between the supply and demand of optimal organs. In this context, the use of extended criteria donor grafts has gained importance, even though these grafts are more susceptible to ischemic reperfusion injury (IRI). Hepatic IRI is an inherent and inevitable consequence of all liver transplants; it involves ischemia-mediated cellular damage exacerbated upon reperfusion and its severity directly affects graft function and post-transplant complications. Strategies for organ preservation have been constantly improving since they first emerged. The current gold standard for preservation is perfusion solutions and static cold storage. However, novel approaches that allow extended preservation times, organ evaluation, and their treatment, which could increase the number of viable organs for transplantation, are currently under investigation. This review discusses the mechanisms associated with IRI, describes existing strategies for liver preservation, and emphasizes novel developments and challenges for effective organ preservation and optimization.
Collapse
Affiliation(s)
- Gabriela Chullo
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Arnau Panisello-Rosello
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Noel Marquez
- Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Jordi Colmenero
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Merce Brunet
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Miguel Pera
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Joan Rosello-Catafau
- Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IBB-CSIC), 08036 Barcelona, Spain;
| | - Ramon Bataller
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Juan Carlos García-Valdecasas
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Yiliam Fundora
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| |
Collapse
|
12
|
Nwaduru C, Baker E, Buff M, Selim M, Ovalle LA, Baker TB, Zimmerman MA. Assessing Liver Viability: Insights From Mitochondrial Bioenergetics in Ischemia-Reperfusion Injury. Transplant Proc 2024; 56:228-235. [PMID: 38171992 DOI: 10.1016/j.transproceed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Orthotopic liver transplantation remains the definitive treatment for patients with end-stage liver disease. Unfortunately, the increasing demand for donor livers and the limited supply of viable organs have both led to a critical need for innovative strategies to expand the pool of transplantable organs. The mitochondrion, central to hepatic cellular function, plays a pivotal role in hepatic ischemic injury, with impaired mitochondrial function and oxidative stress leading to cell death. Mitochondrial protection strategies have shown promise in mitigating IRI and resuscitating marginal organs for transplant. Machine perfusion (MP) has been proven a valuable tool for reviving marginal organs with very promising results. Evaluation of liver viability during perfusion traditionally relies on parameters including lactate clearance, bile production, and transaminase levels. Nevertheless, the quest for more comprehensive and universally applicable viability markers persists. Normothermic regional perfusion has gained robust attention, offering extended recovery time for organs from donation after cardiac death donors. This approach has shown remarkable success in improving organ quality and reducing ischemic injury using the body's physiological conditions. The current challenge lies in the absence of a reliable assessment tool for predicting graft viability and post-transplant outcomes. To address this, exploring insights from mitochondrial function in the context of ischemia-reperfusion injury could offer a promising path toward better patient outcomes and graft longevity. Indeed, hypoxia-induced mitochondrial injury may serve as a surrogate marker of organ viability following oxygenated resuscitation techniques in the future.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
13
|
Eden J, Breuer E, Birrer D, Müller M, Pfister M, Mayr H, Sun K, Widmer J, Huwyler F, Ungethüm U, Humar B, Gupta A, Schiess S, Wendt M, Immer F, Elmer A, Meierhofer D, Schlegel A, Dutkowski P. Screening for mitochondrial function before use-routine liver assessment during hypothermic oxygenated perfusion impacts liver utilization. EBioMedicine 2023; 98:104857. [PMID: 37918219 PMCID: PMC10641151 DOI: 10.1016/j.ebiom.2023.104857] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND To report on a concept of liver assessment during ex situ hypothermic oxygenated perfusion (HOPE) and its significant impact on liver utilization. METHODS An analysis of prospectively collected data on donation after circulatory death (DCD) livers, treated by HOPE at our institution, during a 11-year period between January 2012 and December 2022. FINDINGS Four hundred and fifteen DCD Maastricht III livers were offered during the study period in Switzerland, resulting in 249 liver transplants. Of those, we performed 158 DCD III liver transplants at our institution, with 1-year patient survival and death censored graft survival (death with functioning graft) of 87 and 89%, respectively, thus comparable to benchmark graft survivals of ideal DBD and DCD liver transplants (89% and 86%). Correspondingly, graft loss for primary non-function or cholangiopathy was overall low, i.e., 7/158 (4.4%) and 11/158 (6.9%), despite more than 82% of DCD liver grafts ranked high (6-10 points) or futile risk (>10 points) according to the UK-DCD score. Consistently, death censored graft survival was not different between low-, high-risk or futile DCD III livers. The key behind these achievements was the careful development and implementation of a routine perfusate assessment of mitochondrial biomarkers for injury and function, i.e., release of flavin mononucleotide from complex I, perfusate NADH, and mitochondrial CO2 production during HOPE, allowing a more objective interpretation of liver quality on a subcellular level, compared to donor derived data. INTERPRETATION HOPE after cold storage is a highly suitable and easy to perform perfusion approach, which allows reliable liver graft assessment, enabling surgeons to make a fact based decision on whether or not to implant the organ. HOPE-treatment should be combined with viability assessment particularly when used for high-risk organs, including DCD livers or organs with relevant steatosis. FUNDING This study was supported by the Swiss National Foundation (SNF) grant 320030_189055/1 to PD.
Collapse
Affiliation(s)
- Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Eva Breuer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Dominique Birrer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Matteo Müller
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Matthias Pfister
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Hemma Mayr
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Keyue Sun
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Jeannette Widmer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Florian Huwyler
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Udo Ungethüm
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Bostjan Humar
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Anurag Gupta
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Stefanie Schiess
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Martin Wendt
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Franz Immer
- Swisstransplant, The Swiss National Foundation for Organ Donation and Transplantation, Effingerstrasse 1, Bern 3011, Switzerland
| | - Andreas Elmer
- Swisstransplant, The Swiss National Foundation for Organ Donation and Transplantation, Effingerstrasse 1, Bern 3011, Switzerland
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin 14195, Germany
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland.
| |
Collapse
|
14
|
Prabhu SS, Nair AS, Nirmala SV. Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs. Arch Pharm Res 2023; 46:723-743. [PMID: 37751031 DOI: 10.1007/s12272-023-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The fact that mitochondria play a crucial part in energy generation has led to the nickname "powerhouses" of the cell being applied to them. They also play a significant role in many other cellular functions, including calcium signalling, apoptosis, and the creation of vital biomolecules. As a result, cellular function and health as a whole can be significantly impacted by mitochondrial malfunction. Indeed, malignancies frequently have increased levels of mitochondrial biogenesis and quality control. Adverse selection exists for harmful mitochondrial genome mutations, even though certain malignancies include modifications in the nuclear-encoded tricarboxylic acid cycle enzymes that generate carcinogenic metabolites. Since rare human cancers with mutated mitochondrial genomes are often benign, removing mitochondrial DNA reduces carcinogenesis. Therefore, targeting mitochondria offers therapeutic options since they serve several functions and are crucial to developing malignant tumors. Here, we discuss the various steps involved in the mechanism of cancer for which mitochondria plays a significant role, as well as the role of mitochondria in diseases other than cancer. It is crucial to understand mitochondrial malfunction to target these organelles for therapeutic reasons. This highlights the significance of investigating mitochondrial dysfunction in cancer and other disease research.
Collapse
Affiliation(s)
- Surapriya Surendranath Prabhu
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha Vijayakumar Nirmala
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|