1
|
Ghasemi M, Nouri M, Ansari A, Kouhbanani MT, Nazeri S, Abbasi M, Nori P, Arianejad MM, Dehzangi A, Choudhury PK. Direct Interaction of Long-Term Reactive Oxygen-Based Species Stored in Microencapsulation of Olive Oil on Burn Scars of Wistar Rats. ACS APPLIED BIO MATERIALS 2025; 8:2771-2786. [PMID: 40153251 DOI: 10.1021/acsabm.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Oxygen anions (superoxide and peroxide anions) are naturally unstable and prone to chemical interactions. These reactive oxygen species (ROS) are formed during long-term storage in olive oil (OO), the structural properties of which extend the ROS lifespan more effectively than those of other vegetable oils. In wound treatment, superoxide anions serve as precursors for hydrogen peroxide and play a crucial role in cell proliferation, migration, and angiogenesis. These anions were encapsulated within the OO medium for crystallization. Piezoelectric actuators were employed to distribute the trapped bubbles evenly throughout the crystallized OO. The ROS-filled OO microcapsules eliminated volatile organic compounds and particulate matter (from the air). Samples stored in crystallized OO were utilized to investigate the antibacterial effects. Both Escherichia coli and Staphylococcus aureus were implicated in skin infections (with S. aureus as the primary pathogen and E. coli as the secondary pathogen) and were selected for antibacterial testing. Microcapsules applied to cultured E. coli and S. aureus resulted in different inhibition zones. Two groups [control (C-) and treatment (T-)] of second-degree burn wounds were created on the dorsal area of 15 Wistar rats. Over a period of 2 weeks, statistical analysis using a t-test demonstrated a significant reduction in the wound size in the T-zones. Histological examination with hematoxylin, eosin, and trichrome staining of tissue samples from the wound areas revealed a notable reduction in inflammation, enhanced epidermal cell proliferation, improved activity in producing hair follicles, and increased collagen deposition in the treated regions on different days of observation.
Collapse
Affiliation(s)
- M Ghasemi
- Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Blvd., Evin, 19839 69411 Tehran, Iran
- Nanotech Anion AB, Kulgranden, 11C, Lgh 11032, 22649 Lund, Sweden
| | - M Nouri
- Nanotech Anion AB, Kulgranden, 11C, Lgh 11032, 22649 Lund, Sweden
| | - A Ansari
- Nanotech Anion AB, Kulgranden, 11C, Lgh 11032, 22649 Lund, Sweden
| | - M T Kouhbanani
- Nanotech Anion AB, Kulgranden, 11C, Lgh 11032, 22649 Lund, Sweden
| | - S Nazeri
- Zhinogene Pazhoohan Research Laboratory, Unit 5, Level 2, Iranzamin Shomali, Yas Street, Poonak, 1476714156 Tehran, Iran
| | - M Abbasi
- Zhinogene Pazhoohan Research Laboratory, Unit 5, Level 2, Iranzamin Shomali, Yas Street, Poonak, 1476714156 Tehran, Iran
| | - P Nori
- Department of Sport Sciences, Faculty of Humanities, Semnan University, 3513119111 Semnan, Iran
| | - Mohammad Mahdi Arianejad
- Department of Electrical and Electronics Engineering, Xiamen University, 43900 Sepang, Selangor, Malaysia
| | - A Dehzangi
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, Texas 750803021, United States
| | - Pankaj Kumar Choudhury
- College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Building 1A, 718 East Haizhou Rd., Haining 314400, Zhejiang, China
| |
Collapse
|
2
|
Wang X, Fan X, Zhai Y, Li J, Sun H, Li J, Le H, Zhang F, Zhang L, Wang J, Chu Y, Cui P. Development and functional evaluation of recombinant type III collagen intrauterine implant gel. Regen Biomater 2025; 12:rbaf013. [PMID: 40196171 PMCID: PMC11975284 DOI: 10.1093/rb/rbaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Intrauterine adhesion (IUA) is a prevalent complication arising from uterine surgery, significantly impacting women's fertility and overall quality of life. The conventional clinical approach involves hysteroscopic separation of uterine adhesions, though this method poses operational challenges and carries risks of postoperative re-adhesion. Alternatively, the intraoperative placement of intrauterine devices or support balloons can act as a physical barrier to prevent adhesion formation. However, its effectiveness is limited and it may result in secondary damage to the endothelial tissue. To tackle these challenges, we have engineered a temperature-responsive hydrogel incorporating Pluronic HP407/HP188 pharmaceutical excipients and recombinant type III collagen (rCol III) as a bioactive element. Upon in situ injection into the uterine cavity, this hydrogel transitions from a sol-gel phase to a gel in response to body temperature changes, thereby minimizing nonspecific distribution and prolonging the duration of treatment. In vitro studies demonstrate that rCol III temperature-responsive hydrogels exhibit favorable biocompatibility, exhibit a recruitment effect on human endometrial stromal cells, suppress the expression of the fibrotic factor transforming growth factor beta 1 and promote angiogenesis. To evaluate its efficacy in preventing IUA via in vivo experiments, we employed sexually mature female rats for IUA modeling and compared its performance with a commercially available product, cross-linked sodium hyaluronate gel. The results indicate that rCol III temperature-responsive hydrogels significantly enhance retention at the injury site, substantially promote endometrial regeneration, augment endometrial blood supply and reduce abnormal fibrin deposition. This study suggests that rCol III temperature-responsive hydrogels can effectively prevent post-surgical uterine adhesions, highlighting their potential as a promising adhesion prevention strategy.
Collapse
Affiliation(s)
- Xinhui Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Xiaoju Fan
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Yuanxin Zhai
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Jie Li
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Huilin Sun
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Jie Li
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Hao Le
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Feng Zhang
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yun Chu
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
3
|
Liu P, Hao L, Hsu JC, Zhou M, Luo Z, Peng Y, Cai W, Hu S. Biomineralized Nanocomposite-Integrated Microneedle Patch for Combined Brachytherapy and Photothermal Therapy in Postoperative Melanoma Recurrence and Infectious Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414468. [PMID: 39903769 PMCID: PMC11948049 DOI: 10.1002/advs.202414468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Indexed: 02/06/2025]
Abstract
In the surgical management of malignant melanoma, incomplete tumor resection and large-area cutaneous defects are major contributors to high locoregional recurrence and uncontrolled wound infections, resulting in poor prognosis and prolonged recovery times for patients. Herein, a versatile nanocomposite microneedle patch (referred to as GM-Ag2S/Ca32P) is designed to simultaneously eliminate residual tumor post-surgery and promote the healing of infectious wounds. This microneedle patch effectively penetrates subcutaneous tissues, delivering therapeutic payloads to infiltrating tumor cells and bacteria. The Ag2S/Ca32P nanocomposites encapsulated within the microneedle patch decompose in the acidic microenvironment of tumors and bacterial biofilms, releasing radioactive 32P and Ag2S nanodots, which enhance tumor eradication and bacteria killing through synergistic brachytherapy and photothermal therapy (PTT). Moreover, the nanocomposite microneedle patch promotes scar-free wound healing by reducing inflammation, and promoting granulation tissue formation, collagen deposition, and angiogenesis, thanks to localized hyperthermia, radiation, and the swelling and biodegradation of the microneedle matrices. This microneedle patch-based postoperative adjuvant therapy offers a comprehensive strategy for addressing melanoma recurrence and infectious wound healing, with promising potential for clinical application in postsurgical management.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityNo. 87 Xiangya RoadChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyNHC. No. 87 Xiangya RoadChangshaHunan410008China
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Lu Hao
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityNo. 87 Xiangya RoadChangshaHunan410008China
| | - Jessica C. Hsu
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Ming Zhou
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityNo. 87 Xiangya RoadChangshaHunan410008China
| | - Zhisheng Luo
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityNo. 87 Xiangya RoadChangshaHunan410008China
| | - Ying Peng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Shuo Hu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityNo. 87 Xiangya RoadChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyNHC. No. 87 Xiangya RoadChangshaHunan410008China
| |
Collapse
|
4
|
Bellon B, Pippenger B, Stähli A, Degen M, Parisi L. Cementum and enamel surface mimicry influences soft tissue cell behavior. J Periodontal Res 2025; 60:64-76. [PMID: 38828886 PMCID: PMC11840463 DOI: 10.1111/jre.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
AIMS To test whether titanium surface roughness disparity might be used to specifically guide the behavior of gingiva fibroblasts and keratinocytes, thereby improving the quality of soft tissue (ST) integration around abutments. METHODS Titanium discs resembling the roughness of enamel (M) or cementum (MA) were created with normal or increased hydrophilicity and used as substrates for human fibroblasts and keratinocytes. Adhesion and proliferation assays were performed to assess cell-type specific responses upon encountering the different surfaces. Additionally, immunofluorescence and qPCR analyses were performed to study more in depth the behavior of fibroblasts and keratinocytes on MA and M surfaces, respectively. RESULTS While enamel-like M surfaces supported adhesion, growth and a normal differentiation potential of keratinocytes, cementum-emulating MA surfaces specifically impaired the growth of keratinocytes. Vice versa, MA surfaces sustained regular adhesion and proliferation of fibroblasts. Yet, a more intimate adhesion between fibroblasts and titanium was achieved by an increased hydrophilicity of MA surfaces, which was associated with an increased expression of elastin. CONCLUSION The optimal titanium implant abutment might be achieved by a bimodal roughness design, mimicking the roughness of enamel (M) and cementum with increased hydrophilicity (hMA), respectively. These surfaces can selectively elicit cell responses favoring proper ST barrier by impairing epithelial downgrowth and promoting firm adhesion of fibroblasts.
Collapse
Affiliation(s)
- Benjamin Bellon
- Faculty of Medicine and Health TechnologyUniversity of TampereTampereFinland
- Preclinical and Translational ResearchInstitut Straumann AGBaselSwitzerland
- Clinic of Conservative and Preventive DentistryUniversity of ZurichZürichSwitzerland
| | - Benjamin Pippenger
- Preclinical and Translational ResearchInstitut Straumann AGBaselSwitzerland
- Department of PeriodontologyUniversity of BernBernSwitzerland
| | | | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial OrthopedicsUniversity of BernBernSwitzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial OrthopedicsUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Soen M, Hidayat M, Widowati W. Enhancing dermal collagen density towards youthfulness: A comparative study of PCL, PLLA, and PDO thread implantation in aging rats model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:151-157. [PMID: 39850124 PMCID: PMC11756731 DOI: 10.22038/ijbms.2024.80494.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/21/2024] [Indexed: 01/25/2025]
Abstract
Objectives Both intrinsic and extrinsic factors cause skin aging. Intrinsic aging is characterized by decreased collagen density, particularly collagen types I (COL1A1) and III (COL3A1), and an increase in the COL1/COL3 ratio. Extrinsic aging, primarily due to ultraviolet light exposure, leads to photoaging, which causes collagen fragmentation and reduced production, leading to skin sagging. Thread lifts, a nonsurgical method, aim to tighten the skin and stimulate collagen production using biodegradable monofilament threads such as polydioxanone (PDO), poly-lactic acid (PLLA), and polycaprolactone (PCL). This study compared the effectiveness of PDO, PLLA, and PCL threads in reversing aging by enhancing dermal collagen, reducing the COL1/COL3 ratio, and increasing COL3A1 gene expression in UVB-exposed aging model rats. Materials and Methods Thirty female Wistar (Rattus norvegicus) rats were divided into six groups, and their back hair was shaved and exposed to 840 mJ/m2 UVB for 4 weeks. Skin biopsy specimens were assessed using Sirius Red staining to determine dermal collagen density and the COL1/COL3 ratio. Furthermore, qRT-PCR was used to examine COL3A1 gene expression. Results PDO, PLLA, and PCL threads enhanced skin quality, similar to the young negative control group, based on parameters such as dermal collagen density, COL1/COL3 ratio, and COL3A1 gene expression. PCL thread was more active than PDO and PLLA. Conclusion Thread implantation may result in a more youthful collagen profile than negative control and may be used to support skin anti-aging. The most effective thread was PCL compared to PDO and PLLA.
Collapse
Affiliation(s)
- Mary Soen
- Master Program in Skin Aging and Aesthetic Medicine, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia, 40164
| | - Meilinah Hidayat
- Department of Nutrition, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Wahyu Widowati
- Department of Pharmacology, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| |
Collapse
|
6
|
Hu L, Zhang N, Zhao C, Pan J. Engineering ADSCs by manipulating YAP for lymphedema treatment in a mouse tail model. Exp Biol Med (Maywood) 2024; 249:10295. [PMID: 39633684 PMCID: PMC11614642 DOI: 10.3389/ebm.2024.10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Secondary lymphedema is a chronic disease associated with deformity of limbs and dysfunction; however, conventional therapies are not curative. Adipose-derived stem cells (ADSCs) based therapy is a promising way, but a single transplantation of ADSCs has limited efficacy. In this study, ADSCs were engineered in vitro and then transplanted into the site of lymphedema. Yes-associated protein (YAP), a crucial regulator of Hippo pathway, plays an important role in regulating stem cell functions. We examined the YAP expression in a mouse tail lymphedema model, and found that transplanted ADSCs exhibited high expression level of YAP and a large number of YAP positive cells existed in lymphedema environment. In vitro, the downregulation of YAP in ADSCs resulted in higher expression levels of genes related to lymphangiogenesis such as Lyve-1, VEGFR-3 and Prox-1. In vivo, YAP-engineered ADSCs generated abundant VEGFR-3-positive lymphatic vessels and significantly improved subcutaneous fibrosis. These results indicated that the transplantation of pre-engineered ADSCs by manipulating YAP is a promising strategy for lymphatic reconstruction.
Collapse
Affiliation(s)
| | | | | | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kong W, Bao Y, Li W, Guan D, Yin Y, Xiao Y, Zhu S, Sun Y, Xia Z. Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. Adv Healthc Mater 2024:e2401012. [PMID: 39388509 DOI: 10.1002/adhm.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Stem cell-based therapies hold significant promise for chronic wound healing and skin appendages regeneration, but challenges such as limited stem cell lifespan and poor biocompatibility of delivery systems hinder clinical application. In this study, an in situ delivery system for human adipose-derived stem cells is developed (hADSCs) to enhance diabetic wound healing. The system utilizes a photo-crosslinking recombinant human type III collagen (rHCIII) hydrogel to encapsulate hADSCs, termed the hADSCs@rHCIII hydrogel. This hydrogel undergoes local crosslinking at the wound site, establishing a sturdy 3D niche suitable for stem cell function. Consequently, the encapsulated hADSCs exhibit strong attachment and spreading within the hydrogels, maintaining their proliferation, metabolic activity, and viability for up to three weeks in vitro. Importantly, in vivo studies demonstrate that the hADSCs@rHCIII hydrogel achieves significant in situ delivery of stem cells, prolonging their retention within the wound. This ultimately enhances their immunomodulatory capabilities, promotes neovascularization and granulation tissue formation, facilitates matrix remodeling, and accelerates healing in a diabetic mouse wound model. Collectively, these findings highlight the potential of the conveniently-prepared and user-friendly hADSCs@rHCIII hydrogel as a promising therapeutic approach for diabetic wound treatment and in situ skin regeneration.
Collapse
Affiliation(s)
- Weishi Kong
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yulu Bao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Dingding Guan
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yating Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Burn and Plastic Surgery, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, P. R. China
| | - Yongqiang Xiao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Shihui Zhu
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yu Sun
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Pinky, Sharma A, Arora V, Rao EP, Arava S, Agrawal AK, Jassal M, Mohanty S. Modulating the hAM/PCL Biocomposite for Expedited Wound Healing: A Chemical-Free Approach for Boosting Regenerative Potential. ACS Biomater Sci Eng 2024; 10:3842-3854. [PMID: 38754076 DOI: 10.1021/acsbiomaterials.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
There is an arising need for effective wound dressings that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying cell-based products. As skin wound recovery is a dynamic and complicated process, a significant obstacle to the healing of skin wounds is the lack of an appropriate wound dressing that can imitate the microenvironment of healthy skin and prevent bacterial infection. It requires the well-orchestrated integration of biological and molecular events. In this study, we have fabricated full-thickness skin graft biocomposite membranes to target full-thickness skin excision wounds. We reinforced human amniotic membrane (hAM) with electrospun polycaprolactone (PCL) to develop composite membranes, namely, PCL/hAM and PCL/hAM/PCL. Composite membranes were compared for physical, biological, and mechanical properties with the native counterpart. PCL/hAM and PCL/hAM/PCL displayed improved stability and delayed degradation, which further synergically improved the rapid wound healing property of hAM, driven primarily by wound closure analysis and histological assessment. Moreover, PCL/hAM displayed a comparable cellular interaction to hAM. On application as a wound dressing, histological analysis demonstrated that hAM and PCL/hAM promoted early epidermis and dermis formation. Studies on in vivo wound healing revealed that although hAM accelerates cell development, the overall wound healing process is similar in PCL/hAM. This finding is further supported by the immunohistochemical analysis of COL-1/COL-3, CD-31, and TGF-β. Overall, this conjugated PCL and hAM-based membrane has considerable potential to be applied in skin wound healing. The facile fabrication of the PCL/hAM composite membrane provided the self-regenerating wound dressing with the desired mechanical strength as an ideal regenerative property for skin tissue regeneration.
Collapse
Affiliation(s)
- Pinky
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Aarushi Sharma
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Varun Arora
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashwini K Agrawal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manjeet Jassal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
9
|
Yan K, Han L, Xu S, Jiang L, Chang X, Li H, Liu L. The Effect of Age on the Regenerative Potential of Adipose Stem-cell-derived Apoptotic Extracellular Vesicles in Rat Skin Wound Healing. Int J Med Sci 2024; 21:1529-1540. [PMID: 38903926 PMCID: PMC11186420 DOI: 10.7150/ijms.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Skin, being the body's largest organ, is susceptible to injuries. Despite the adoption of common treatments such as debridement, wound dressing, and infection control measures for skin injuries, the outcomes remain unsatisfactory, especially in diabetic patients or elderly patients. The use of adipose stem cell-derived apoptotic extracellular vesicles (apoEVs-ASCs) has been shown great therapeutic potential in wound repair. The effect of the donor age on the biological properties and functions of apoEVs-ASCs has not been reported. Methods: In this study, we isolated apoEVs-ASCs from young and aged rats. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were applied for the characteristics of apoEVs-ASCs. For aged and young apoEVs-ASCs groups, the proliferative and migration abilities in vitro, and wound healing function in vivo were contrastively evaluated and quantified for statistical analysis. Results: Our results showed that both young and aged apoEVs-ASCs induced skin healing and reduced scar formation. In addition, young apoEVs-ASCs had significantly higher proliferation, migration of fibroblasts and endothelial cells, and increased neo-angiogenesis ability, when compared with that of aged apoEVs-ASCs. Conclusion: Young apoEVs-ASCs should be employed for wound repair, which is associated with its superior promoting effect on wound healing.
Collapse
Affiliation(s)
- Kaixin Yan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lu Han
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Siwei Xu
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linli Jiang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinnan Chang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hui Li
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Biomaterials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, 48109, MI, United States
| | - Lei Liu
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
You C, Zhang Z, Guo Y, Liu S, Hu K, Zhan Y, Aihemaiti S, Tao S, Chu Y, Fan L. Application of extracellular matrix cross-linked by microbial transglutaminase to promote wound healing. Int J Biol Macromol 2024; 266:131384. [PMID: 38580012 DOI: 10.1016/j.ijbiomac.2024.131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
One primary focus of skin tissue engineering has been the creation of innovative biomaterials to facilitate rapid wound healing. Extracellular matrix (ECM), an essential biofunctional substance, has recently been discovered to play a crucial role in wound healing. Consequently, we endeavored to decellularize ECM from pig achilles tendon and refine its mechanical and biological properties through modification by utilizing cross-linking agents. Glutaraldehyde (GA), 1-ethyl-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), double aldol starch (DAS), and microbial transglutaminase (MTG) were utilized to produce crosslinked ECM variants (GA-ECM, EDC/NHS-ECM, DAS-ECM, and MTG-ECM). Comprehensive assessments were conducted to evaluate the physical properties, biocompatibility, and wound healing efficacy of each material. The results indicated that MTG-ECM exhibited superior tensile strength, excellent hydrophilicity, minimal cytotoxicity, and the best pro-healing impact among the four modified scaffolds. Staining analysis of tissue sections further revealed that MTG-ECM impeded the transition from type III collagen to type I collagen in the wound area, potentially reducing the development of wound scar. Therefore, MTG-ECM is expected to be a potential pro-skin repair scaffold material to prevent scar formation.
Collapse
Affiliation(s)
- Chenkai You
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Zhihan Zhang
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Yuandong Guo
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Shuang Liu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Kangdi Hu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Yuhang Zhan
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Shami Aihemaiti
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Shengxiang Tao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China.
| | - Yingying Chu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China.
| | - Lihong Fan
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China.
| |
Collapse
|
11
|
Cheng C, Wang R, Ma J, Zhang Y, Jing Q, Lu W. Examining the wound healing potential of curcumin-infused electrospun nanofibers from polyglutamic acid and gum arabic. Int J Biol Macromol 2024; 267:131237. [PMID: 38554903 DOI: 10.1016/j.ijbiomac.2024.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Advancements in medicine have led to continuous enhancements and innovations in wound dressing materials, making them pivotal in medical care. We used natural biological macromolecules, γ-polyglutamic acid and gum arabic as primary raw materials to create nanofibers laden with curcumin by blending electrostatic spinning technology in the current investigation. These nanofibers were meticulously characterized using fluorescence microscopy, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Our comprehensive analyses confirmed the successful encapsulation of curcumin within the nanofiber carrier and it has uniform diameter, good water absorption and mechanical properties. Subsequently, we evaluated the antimicrobial effects of these curcumin-loaded nanofibers against Staphylococcus aureus through an oscillating flask method. We created a mouse model with acute full-thickness skin defects to further investigate the wound healing potential. We conducted various biochemical assays to elucidate the mechanism of action. The results revealed that curcumin nanofibers profoundly impacted wound healing. They bolstered the expression of TGF-β1 and VEGF and reduced the expression of inflammatory factors, leading to an accelerated re-epithelialization process, enhanced wound contraction, and increased regeneration of new blood vessels and hair follicles. Furthermore, these nanofibers positively influenced the proportion of three different collagen types. This comprehensive study underscores the remarkable potential of curcumin-loaded nanofibers to facilitate wound healing and lays a robust experimental foundation for developing innovative, natural product-based wound dressings.
Collapse
Affiliation(s)
- Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute of HIT, Chongqing, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China.
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute of HIT, Zhengzhou, China; Chongqing Research Institute of HIT, Chongqing, China.
| | - Jiapei Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute of HIT, Zhengzhou, China; Chongqing Research Institute of HIT, Chongqing, China
| | - Qiuju Jing
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute of HIT, Zhengzhou, China; Chongqing Research Institute of HIT, Chongqing, China.
| |
Collapse
|
12
|
Wu Q, Guo Y, Li H, Zhang D, Wang S, Hou J, Cheng N, Huang M, Luo L, Li Y, Zhao Y, Tan H, Jin C. Recombinant human collagen I/carboxymethyl chitosan hydrogel loaded with long-term released hUCMSCs derived exosomes promotes skin wound repair. Int J Biol Macromol 2024; 265:130843. [PMID: 38484819 DOI: 10.1016/j.ijbiomac.2024.130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS Successful extraction of hUCMSCs-derived exosomes was confirmed by TEM,Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.
Collapse
Affiliation(s)
- Qiong Wu
- The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Yayuan Guo
- School of Stomatology, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, PR China
| | - Dan Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Shixu Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Jianing Hou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Nanqiong Cheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Mengfei Huang
- Shanghai Shengran Biotechnology Co., Ltd, Shanghai, PR China
| | - Linna Luo
- Shaanxi HuiKang Bio-Tech Co., LTD, Xi'an, PR China
| | - Yuan Li
- Shaanxi HuiKang Bio-Tech Co., LTD, Xi'an, PR China
| | - Yurong Zhao
- Shaanxi Center for Drug and Vaccine Inspection, Xi'an, PR China
| | - Hong Tan
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| | - Changxin Jin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
13
|
Goudarzi Afshar S, Tamri P, Nourian A, Moahmoudi A. Catechin Hydrate Improves Hypertrophic Scar in Rabbit Ear Model via Reduction of Collagen Synthesis. Rep Biochem Mol Biol 2024; 13:13-22. [PMID: 39582828 PMCID: PMC11580136 DOI: 10.61186/rbmb.13.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/03/2024] [Indexed: 11/26/2024]
Abstract
Background Hypertrophic scar (HS) is a cutaneous condition results from abnormal wound healing following deep tissue injury. To date, there is no optimal treatment for this skin disorder. Catechins possess anti-inflammatory, antioxidant and anti-fibrotic properties. In this study we investigated the effects of catechin hydrate (CH) in rabbit ear model of HS. Methods A rabbit ear model of hypertrophic scar was set up. Ten New Zealand white rabbit were divided into 5 equal groups: non-treatment group, vehicle control, treated with intralesional injection of dimethyl sulfoxide (DMSO), and test groups, received intralesional injection of CH/DMSO solution at concentration of 0.25, 1.25 and, 2.5 mg/ml, respectively. The treatments were initiated 35 days after wounding once a week for 4 weeks. The scar elevation index (SEI) and the epidermal thickness index (ETI) were measured using Hematoxylin and Eosin (H & E) staining and the amount of collagen deposition were determined after Masson' trichrome staining. In addition, the enzyme-linked immunosorbent assay (ELISA) method was used to determine the levels of type І and ІІІ collagen and matrix metalloproteinase 1 (MMP1) in scar tissues. Results CH improved abnormal scarring at concentrations of 1.25 and 2.5 mg/ml and significantly (P<0.001) reduced the SEI and ETI. The levels of collagen type І and type ІІІ, and total collagen deposition were significantly (P<0.05) decreased in scar tissues of CH treated groups and no significant effect on MMP1 levels. Conclusions Our findings demonstrated that CH has the potential for the treatment of HSs.
Collapse
Affiliation(s)
- Sina Goudarzi Afshar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Pari Tamri
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Nourian
- Department of Laboratory Sciences, Faculty of Para-Veterinary Sciences, Bu-Ali Sina University, Hamadan, Iran.
| | - Ayoub Moahmoudi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Liu X, Sun Y, Wang J, Kang Y, Wang Z, Cao W, Ye J, Gao C. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds. Bioact Mater 2024; 34:269-281. [PMID: 38261887 PMCID: PMC10794931 DOI: 10.1016/j.bioactmat.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Wound management is an important issue that places enormous pressure on the physical and mental health of patients, especially in cases of infection, where the increased inflammatory response could lead to severe hypertrophic scars (HSs). In this study, a hydrogel dressing was developed by combining the high strength and toughness, swelling resistance, antibacterial and antioxidant capabilities. The hydrogel matrix was composed of a double network of polyvinyl alcohol (PVA) and agarose with excellent mechanical properties. Hyperbranched polylysine (HBPL), a highly effective antibacterial cationic polymer, and tannic acid (TA), a strong antioxidant molecule, were added to the hydrogel as functional components. Examination of antibacterial and antioxidant properties of the hydrogel confirmed the full play of the efficacy of HBPL and TA. In the in vivo studies of methicillin-resistant Staphylococcus aureus (MRSA) infection, the hydrogel had shown obvious promotion of wound healing, and more profoundly, significant suppression of scar formation. Due to the common raw materials and simple preparation methods, this hydrogel can be mass produced and used for accelerating wound healing while preventing HSs in infected wounds.
Collapse
Affiliation(s)
- Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Sun
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| |
Collapse
|