1
|
Minute L, Montalbán-Hernández K, Bravo-Robles L, Conejero L, Iborra S, Del Fresno C. Trained immunity-based mucosal immunotherapies for the prevention of respiratory infections. Trends Immunol 2025; 46:270-283. [PMID: 40113536 DOI: 10.1016/j.it.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The devastating impact of respiratory infections demonstrates the critical need for novel prophylactic vaccines. In this opinion article, we advocate for bacterial immunotherapies as a complementary tool in our fight against respiratory infections. These immunotherapies can activate a wide spectrum of immunological mechanisms, with trained immunity (TI) being particularly significant. This phenomenon has led to the concept of trained immunity-based vaccines (TIbVs), which represent a novel approach in vaccinology. We discuss examples of TIbVs, including the tuberculosis vaccine Bacille Calmette-Guérin (BCG) and the polybacterial immunotherapy MV130. From our viewpoint, illustrating the mode of action and clinical evidence supports the proposal that TIbVs should be considered as next-generation vaccines to confer protection against a wide range of respiratory infections.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Laura Bravo-Robles
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | | | - Carlos Del Fresno
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain.
| |
Collapse
|
2
|
Jiménez E, Vázquez A, González S, Sacedón R, Fernández-Sevilla LM, Varas A, Subiza JL, Valencia J, Vicente Á. Mucosal Bacterial Immunotherapy Attenuates the Development of Experimental Colitis by Reducing Inflammation Through the Regulation of Myeloid Cells. Int J Mol Sci 2024; 25:13629. [PMID: 39769391 PMCID: PMC11728189 DOI: 10.3390/ijms252413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis is a chronic relapsing-remitting and potentially progressive form of inflammatory bowel disease in which there is extensive inflammation and mucosal damage in the colon and rectum as a result of an abnormal immune response. MV130 is a mucosal-trained immunity-based vaccine used to prevent respiratory tract infections in various clinical settings. Additionally, MV130 may induce innate immune cells that acquire anti-inflammatory properties and promote tolerance, which could have important implications for chronic inflammatory diseases such as ulcerative colitis. This work demonstrated that the prophylactic administration of MV130 substantially mitigated colitis in a mouse model of acute colitis induced by dextran sulphate sodium. MV130 downregulated systemic and local inflammatory responses, maintained the integrity of the intestinal barrier by preserving the enterocyte layer and goblet cells, and reduced the oedema and fibrosis characteristic of the disease. Mechanistically, MV130 significantly reduced the infiltration of neutrophils and pro-inflammatory macrophages in the intestinal wall of the diseased animals and favoured the appearance of M2-polarised macrophages. These results suggest that MV130 might have therapeutic potential for the treatment of ulcerative colitis, reducing the risk of relapse and the progression of disease.
Collapse
Affiliation(s)
- Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Alberto Vázquez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
| | - Sara González
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia M. Fernández-Sevilla
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
3
|
Martín-Cruz L, Benito-Villalvilla C, Angelina A, Subiza JL, Palomares O. Trained immunity-based vaccines for infections and allergic diseases. J Allergy Clin Immunol 2024; 154:1085-1094. [PMID: 39303893 DOI: 10.1016/j.jaci.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Trained immunity has emerged as a new concept in immunology that is associated with the memory of innate immune cells and linked to specific metabolic and epigenetic reprogramming of these cells. Trained immunity may confer nonspecific and sustained protection against a broad range of pathogens, and recent findings show that it might also be involved in allergy mechanisms. Some conventional vaccines have demonstrated trained immunity induction as the mechanism underlying their heterologous protection. The development of novel vaccines designed especially for this purpose (trained immunity-based vaccines) might be useful in the absence of conventional vaccines or in specific clinical settings. Under certain circumstances, trained immunity could lead to persistent inflammatory innate immune cell responses in subjects with allergy, which could be associated with the development and worsening of allergy by promoting and amplifying aberrant type 2 immune responses. In other cases, trained immunity may help promote healthy immune responses to allergens, such as type 1 responses that counterbalance the type 2 inflammation or regulatory T cells that induce tolerance. Trained immunity-based allergen vaccines could become the next generation of allergen-specific immunotherapy vaccines, harnessing the potential of trained immunity to induce allergen tolerance. The identification and characterization of proper training inducers might well pave the way for the development of novel immunotherapies.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain.
| |
Collapse
|
4
|
Candelas G, Villegas Á, Sánchez-Ramón S. Mucosal trained immunity-based vaccines: Cutting recurrent infections in autoimmune patients on immunosuppression. J Allergy Clin Immunol 2024; 154:1120-1122. [PMID: 39307289 DOI: 10.1016/j.jaci.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/09/2024]
Affiliation(s)
- Gloria Candelas
- Department of Rheumatology, Instituto de Medicina de Laboratorio (IML) and Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ángela Villegas
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology, and ENT, School of Medicine, Complutense University, Madrid, Spain.
| |
Collapse
|
5
|
Baydemir I, Dulfer EA, Netea MG, Domínguez-Andrés J. Trained immunity-inducing vaccines: Harnessing innate memory for vaccine design and delivery. Clin Immunol 2024; 261:109930. [PMID: 38342415 DOI: 10.1016/j.clim.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
While the efficacy of many current vaccines is well-established, various factors can diminish their effectiveness, particularly in vulnerable groups. Amidst emerging pandemic threats, enhancing vaccine responses is critical. Our review synthesizes insights from immunology and epidemiology, focusing on the concept of trained immunity (TRIM) and the non-specific effects (NSEs) of vaccines that confer heterologous protection. We elucidate the mechanisms driving TRIM, emphasizing its regulation through metabolic and epigenetic reprogramming in innate immune cells. Notably, we explore the extended protective scope of vaccines like BCG and COVID-19 vaccines against unrelated infections, underscoring their role in reducing neonatal mortality and combating diseases like malaria and yellow fever. We also highlight novel strategies to boost vaccine efficacy, incorporating TRIM inducers into vaccine formulations to enhance both specific and non-specific immune responses. This approach promises significant advancements in vaccine development, aiming to improve global public health outcomes, especially for the elderly and immunocompromised populations.
Collapse
Affiliation(s)
- Ilayda Baydemir
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands
| | - Elisabeth A Dulfer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands
| |
Collapse
|