1
|
Tzekaki E, Bekiari C, Pantazaki A, Tsantarliotou M, Tsolaki M, Lavrentiadou SN. A new protocol for the development of organoids based on molecular mechanisms in the developing newborn rat brain: Prospective applications in the study of Alzheimer's disease. J Neurosci Methods 2025; 417:110404. [PMID: 39978482 DOI: 10.1016/j.jneumeth.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Brain organoids have emerged as powerful models for studying brain development and neurological disorders COMPARISON WITH EXISTING METHODS: Current models rely on stem cell isolation and differentiation using different growth factors. Thus, their composition varies according to the protocol followed. NEW METHOD We developed a simple protocol to generate organoids from newborn rat whole brain. It is a one-step procedure that yields organoids of consistent composition. The whole brains from 3-day old pups were digested enzymatically. All isolated cells were seeded in culture plates using a basement membrane extract (BME) matrix as a scaffold and cultured in the presence of the appropriate medium. RESULTS Hematoxylin-eosin staining of 28-day-old cultured domes revealed their structural integrity, while immunohistochemistry confirmed the presence of neurons, astrocytes, microglia, and progenitor stem cells in the structures. To assess whether these organoids can serve as a model to study brain physiopathology, and in particular neurodegenerative diseases such as Alzheimer's disease (AD), we determined how these organoids respond upon their exposure to lipopolysaccharides (LPS), a potent neuroinflammatory factor. LPS-induced amyloid precursor protein (APP), tau protein and glial fibrillary acidic protein (GFAP) expression. Moreover, the intracellular levels of IL-1β and the extracellular levels of amyloid-beta (Aβ) were also elevated. CONCLUSIONS Therefore, this simple protocol results in the generation of functional brain organoids with a consistent structure, that requires no use of varying factors that may affect the structure and function of the produced organoids, thus providing a valuable tool for the study of the physiopathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleni Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Maria Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Magda Tsolaki
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Sophia N Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece; Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
2
|
Chen MJ, Chen CL, Chang YY, Huang CC, Wu WC, Ho HN, Tseng WYI. Influence of dehydroepiandrosterone sulphate levels on the slower age-related decline in grey matter in younger women with polycystic ovary syndrome. Brain Commun 2025; 7:fcaf052. [PMID: 39958263 PMCID: PMC11829216 DOI: 10.1093/braincomms/fcaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by excess androgens, ovulatory disorders and a higher prevalence of obesity and metabolic disturbances including Type 2 diabetes, hyperlipidaemia and hypertension, some of which are risk factors for neurodegenerative disorders such as Alzheimer's disease and brain atrophy. However, it is unclear whether brain ageing occurs more rapidly in women with PCOS compared with those without PCOS. Except for the hypothalamic-pituitary-gonadal axis involved in the conventional ovulatory process, little is known regarding the role of the grey matter in the pathogenesis of PCOS, and limited existing studies examining brain structures in PCOS have shown inconsistent results. This case-control study aimed to investigate the age-related differences in total and regional brain grey matter volume and average cortical thickness in young women with and without PCOS by using brain magnetic resonance imaging to understand whether women with PCOS exhibit distinctive patterns of brain ageing, and their association with factors including obesity, hyperandrogenism and metabolic disturbances. Seventy-six women diagnosed with PCOS and 68 age-matched women without PCOS (aged 20-35 years) underwent brain magnetic resonance imaging to measure grey matter volume and cortical thickness. Anthropometric, hormonal and metabolic measurements were conducted to assess their associations with the investigated brain structures. In women without PCOS, increasing age was significantly correlated with a decrease in global grey matter volume (r = -0.5598, P < 0.0001), while this association was not significant in women with PCOS (r = -0.1475, P = 0.204). The decline in grey matter volume with age differed significantly between the two groups regardless of obesity (body mass index exceeding 25 kg/m2), especially in the frontal, parietal, occipital and temporal regions. After adjusting for dehydroepiandrosterone sulphate (DHEAS) levels, the negative association between age and global grey matter volume became statistically significant in women with PCOS. Increasing age was also significantly associated with a decrease in global cortical thickness in women without PCOS, but not in women with PCOS. Such negative association between global cortical thickness and age was particularly stronger in women with obesity compared with those without. The negative association between age and global cortical thickness in women with PCOS became pronounced after adjusting for DHEAS levels. Women with PCOS experience a milder grey matter loss with age compared with women without PCOS. The neuroprotective effect of high DHEAS levels in women with PCOS may be implicated in this relationship.
Collapse
Affiliation(s)
- Mei-Jou Chen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
- Livia Shang Yu Wan Chair Professor of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Le Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yu-Yuan Chang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chu-Chun Huang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
- Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- AcroViz Inc., Taipei 104, Taiwan
| |
Collapse
|
3
|
Baglietto-Vargas D, Freude KK, Garcia-Leon JA. Animal and Cellular Models of Alzheimer's Disease. Biomedicines 2024; 12:1308. [PMID: 38927515 PMCID: PMC11201219 DOI: 10.3390/biomedicines12061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Animal and cellular models have been essential tools over the years to understand many pathogenic mechanisms underlying different neurodegenerative disorders (NDDs), including Alzheimer's disease (AD) [...].
Collapse
Affiliation(s)
- David Baglietto-Vargas
- Departament Biologia Celular, Genetica y Fisiologia, Instituto de Investigaciones Biomedicas de Malaga-Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain;
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Kristine K. Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870C Frederiksberg, Denmark;
| | - Juan Antonio Garcia-Leon
- Departament Biologia Celular, Genetica y Fisiologia, Instituto de Investigaciones Biomedicas de Malaga-Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain;
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
4
|
Coelingh Bennink HJT, Prowse A, Egberts JFM, Debruyne FMJ, Huhtaniemi IT, Tombal B. The Loss of Estradiol by Androgen Deprivation in Prostate Cancer Patients Shows the Importance of Estrogens in Males. J Endocr Soc 2024; 8:bvae107. [PMID: 38883397 PMCID: PMC11177789 DOI: 10.1210/jendso/bvae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
The role of estradiol (E2; an estrogen) in men needs to be more appreciated. In this review, we address the clinical situations that allow the study of the clinical consequences of E2 deficiency in men and discuss the effects of restoration of levels of this reproductive steroid hormone. In men with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT), E2 is suppressed along with testosterone, leading to side effects affecting the quality of life. These include hot flashes, arthralgia, fatigue, mood changes, cognition problems, weight gain, bone loss, and increased risk of cardiovascular disease. Transdermal E2 alone for ADT has shown equivalent testosterone suppression compared to gonadotropin-releasing hormone (GnRH) agonists while also preventing estrogen-deficiency side effects, including hot flashes and bone loss. Co-treatment of ADT with fetal estrogen estetrol (E4) has shown significant improvements of estrogen-deficiency symptoms. These observations emphasize the need to raise awareness of the importance of estrogens in men among clinicians and the lay public.
Collapse
Affiliation(s)
| | - Amanda Prowse
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | - Jan F M Egberts
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | | | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London SW7 2AZ, UK
| | - Bertrand Tombal
- Division of Urology, University Clinic Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
5
|
Salcedo C, Pozo Garcia V, García-Adán B, Ameen AO, Gegelashvili G, Waagepetersen HS, Freude KK, Aldana BI. Increased glucose metabolism and impaired glutamate transport in human astrocytes are potential early triggers of abnormal extracellular glutamate accumulation in hiPSC-derived models of Alzheimer's disease. J Neurochem 2024; 168:822-840. [PMID: 38063257 DOI: 10.1111/jnc.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 05/19/2024]
Abstract
Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.
Collapse
Affiliation(s)
- Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Pozo Garcia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernat García-Adán
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georgi Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Hossain MK, Kim HR, Chae HJ. Aging phenotype in AD brain organoids: Track to success and challenges. Ageing Res Rev 2024; 96:102256. [PMID: 38460555 DOI: 10.1016/j.arr.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Alzheimer's disease (AD) poses a complex challenge, with abnormal protein accumulation in the brain causing memory loss and cognitive decline. Traditional models fall short in AD research, prompting interest in 3D brain organoids (BOs) from human stem cells. These findings hold promise for unveiling the mechanisms of AD, especially in relation to aging. However, an understanding of the aging impact of AD remains elusive. BOs offer insight but face challenges. This review delves into the role of BOs in deciphering aging-related AD and acknowledges limitations. Strategies to enhance BOs for accurate aging modeling in AD brains are suggested. Strengthened by molecular advancements, BOs have the potential to uncover the aging phenotype, advancing AD research.
Collapse
Affiliation(s)
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Han Jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
7
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Kanuri B, Biswas P, Dahdah A, Murphy AJ, Nagareddy PR. Impact of age and sex on myelopoiesis and inflammation during myocardial infarction. J Mol Cell Cardiol 2024; 187:80-89. [PMID: 38163742 PMCID: PMC10922716 DOI: 10.1016/j.yjmcc.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Of all the different risk factors known to cause cardiovascular disease (CVD), age and sex are considered to play a crucial role. Aging follows a continuum from birth to death, and therefore it inevitably acts as a risk for CVD. Along with age, sex differences have also been shown to demonstrate variations in immune system responses to pathological insults. It has been widely perceived that females are protected against myocardial infarction (MI) and the protection is quite apparent in young vs. old women. Acute MI leads to changes in the population of myeloid and lymphoid cells at the injury site with myeloid bias being observed in the initial inflammation and the lymphoid in the late-resolution phases of the pathology. Multiple evidence demonstrates that aging enhances damage to various cellular processes through inflamm-aging, an inflammatory process identified to increase pro-inflammatory markers in circulation and tissues. Following MI, marked changes were observed in different sub-sets of major myeloid cell types viz., neutrophils, monocytes, and macrophages. There is a paucity of information regarding the tissue and site-specific functions of these sub-sets. In this review, we highlight the importance of age and sex as crucial risk factors by discussing their role during MI-induced myelopoiesis while emphasizing the current status of myeloid cell sub-sets. We further put forth the need for designing and executing age and sex interaction studies aimed to determine the appropriate age and sex to develop personalized therapeutic strategies post-MI.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Priosmita Biswas
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Albert Dahdah
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|