1
|
Eksi OB, Guler A, Akdeniz M, Atalay P, Hamurcu Z, Aydin O. Development of silver-based hybrid nanoparticles loaded with eEF2 K-siRNA and quercetin against triple-negative breast cancer. Drug Deliv Transl Res 2025:10.1007/s13346-025-01860-6. [PMID: 40266550 DOI: 10.1007/s13346-025-01860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Breast cancer is the most common cancer among women, with approximately 2.3 million new cases globally. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and HER2 expression, making it unresponsive to traditional therapies. Eukaryotic Elongation Factor 2 Kinase (eEF2K) is overexpressed in TNBC, promoting cell survival by inhibiting apoptosis through phosphorylation of eEF2. Recently, eEF2K has been targeted for cancer therapy, and siRNA-based gene therapy has emerged as an effective approach to silence overexpressed genes. However, siRNA delivery is challenging due to its instability and susceptibility to degradation. In this study, we developed a novel hybrid nanoparticle (HNP) using a Layer-by-Layer (LbL) method for siRNA delivery targeting eEF2K in TNBC. The HNPs consist of a silver nanoparticle (AgNP) core, coated with poly (allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS), and loaded with eEF2K-siRNA and quercetin (QU), a chemotherapeutic agent, in separate layers. The nanoparticles also incorporated 4-ATP molecules for Raman traceability. In vitro experiments on TNBC cell lines (MDA-MB-231, BT-549, 4T1) showed that the combination therapy of eEF2K-siRNA and QU reduced cell viability, inhibited colony formation, and suppressed cell migration. At high 120 nM of siRNA concentration, 3D spheroid disintegration, activation of apoptotic pathways, and eventual necrotic cell death were observed. The results demonstrate that the developed HNPs are non-toxic, effective, and offer potential as a theranostic platform for TNBC treatment.
Collapse
Affiliation(s)
- Orhan Burak Eksi
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| | - Ahsen Guler
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
- GENKOK-Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Munevver Akdeniz
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
- Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Pinar Atalay
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
- GENKOK-Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Omer Aydin
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey.
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri, 38039, Turkey.
- Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey.
- ERKAM-Clinical Engineering Research and Implementation Center, Erciyes University, 38030, Kayseri, Turkey.
| |
Collapse
|
2
|
Gaviria-Soteras L, Sharma AK, Sanmartín C, Plano D. Recent Insights into Bioactive Dichalcogen Derivatives: From Small Molecules to Complex Materials. Int J Mol Sci 2025; 26:2436. [PMID: 40141080 PMCID: PMC11942125 DOI: 10.3390/ijms26062436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Organodichalcogenides have been explored due to their therapeutic properties. They have been demonstrated to be active against several diseases such as cancer, bacteria, viruses, parasites, or neurological diseases. Among the different classes of dichalcogenides, disulfide derivatives have been widely studied, and many studies cover their therapeutical use. For this reason, this review includes the latest studies of diselenides and ditellurides derivatives with biological applications. With this aim, several bioactive small molecules containing the diselenide or ditelluride bond in their structure have been discussed. Furthermore, it should be highlighted that, in recent years, there has been an increasing interest in the development of nanomaterials for drug delivery due to their therapeutic advantages. In this context, diselenide and ditelluride-containing nanocarriers have emerged as novel approaches. The information compiled in this review includes small molecules and more complex materials containing diselenide or ditelluride bonds in their structure for different therapeutical applications, which could be helpful for the further development of novel drugs for the treatment of different diseases.
Collapse
Affiliation(s)
- Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Molecular and Precision Medicine, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
3
|
Dauplais M, Romero S, Lazard M. Exposure to Selenomethionine and Selenocystine Induces Redox-Mediated ER Stress in Normal Breast Epithelial MCF-10A Cells. Biol Trace Elem Res 2025; 203:1453-1464. [PMID: 38777874 DOI: 10.1007/s12011-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.
Collapse
Affiliation(s)
- Marc Dauplais
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Stephane Romero
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France
| | - Myriam Lazard
- Laboratoire de Biologie Structurale de La Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP, Paris, Palaiseau, France.
| |
Collapse
|
4
|
Parsyan A, Bhat V, Athwal H, Goebel EA, Allan AL. Artemis and its role in cancer. Transl Oncol 2025; 51:102165. [PMID: 39520877 PMCID: PMC11584690 DOI: 10.1016/j.tranon.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Artemis is a key nuclease involved in the non-homologous end joining repair pathway upon DNA double-stranded breaks and during V(D)J recombination. It participates in various cellular processes and cooperates with various proteins involved in tumorigenesis. Its hereditary mutations lead to several pathological conditions, such as severe combined immunodeficiency with radiation sensitivity. Recent studies suggest that Artemis deregulation plays an important role in cancer and is associated with poorer oncologic outcomes and resistance to treatment including radiotherapy, chemotherapy and targeted therapeutics. Artemis emerges as an attractive candidate for cancer prognosis and treatment. Its role in modulating sensitivity to ionizing radiation and DNA-damaging agents makes it an appealing target for drug development. Various existing drugs and novel compounds have been described to inhibit Artemis activity. This review synthesizes the up-to-date information regarding Artemis function, its role in different malignancies and its clinical utility as a potential biomarker and therapeutic target in Oncology.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada; Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, ON, N6A 4V2, Canada.
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Emily A Goebel
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, ON, N6A 5A5, Canada
| | - Alison L Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada
| |
Collapse
|
5
|
Xu M, Gao X, Yue L, Li J, Feng X, Huang D, Cai H, Qi Y. Sensitivity of triple negative breast cancer cells to ATM-dependent ferroptosis induced by sodium selenite. Exp Cell Res 2024; 442:114222. [PMID: 39214329 DOI: 10.1016/j.yexcr.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Targeting ferroptosis, a type of cell death elicited by Fe2+ and lipid reactive oxygen species (L-ROS), provides a novel strategy for cancer therapy. Selenium has the potential to treat cancers by acting as a pro-oxidative agent, thus leading to cancer cell death. Here, we found that the triple negative breast cancer (TNBC) MDA-MB-231 cells were more sensitive to ferroptosis induced by sodium selenite (Na2SeO3) than that of non-TNBC MCF-7 cells. Na2SeO3 significantly elevated the level of L-ROS, MDA and Fe2+, decreased the content of GSH and the enzyme activity of GPx, disrupted the expression of ferroptosis related proteins such as GPx4 and FTH1, as well as compromised mitochondrial morphology in MDA-MB-231 cells. Moreover, ATM was activated by Na2SeO3 in MDA-MB-231 cells. Notably, Na2SeO3-induced ferroptosis was inhibited by ATM kinase inhibitor KU55933 or siATM, suggesting that Na2SeO3-induced ferroptosis was mediated by ATM protein in MDA-MB-231 cells. Our findings suggest a therapeutic strategy by ferroptosis against TNBC and deepened our understanding of ATM function.
Collapse
Affiliation(s)
- Mengchen Xu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Yue
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinyu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 222 South Tianshui R.D., Lanzhou, 730000, China.
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Sidira D, Siafaka A, Chrysikos D, Papadopoulos G, Stratopoulos E, Filippou D. Selenium and Triple Negative Breast Cancer. Acta Med Acad 2024; 53:155-164. [PMID: 39639654 PMCID: PMC11626238 DOI: 10.5644/ama2006-124.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The deadliest, most dangerous subtype of breast cancer is triple-negative, which lacks treatment targets and accounts for 30% of all breast cancer-related deaths worldwide. TNBC is characterized by the expression of no estrogen, progesterone, or human epidermal growth factor 2 receptors. This suggests that new treatment modalities with fewer adverse effects are required. OBJECTIVE The aim of the present study was to investigate the therapeutic potential of selenium compounds as an adjuvant therapy for Triple Negative Breast Cancer (TNBC), either on their own or in conjunction with nutritional supplements and chemotherapy medications. METHODS Using the keywords "selenium" and "triple negative breast cancer", a thorough search was conducted in the PubMed database, yielding 23 articles. The following factors were taken into consideration for inclusion: studies using TNBC cell culture lines or in vivo tumors/specimens; full-text articles from the PubMed database; studies published in the English language; experiments with statistically significant results; and selenium used alone or in combination with other antioxidants or chemotherapy. This led to the evaluation of 13 articles in this review. RESULTS The results show that selenium therapy increased the anti-cancer drug's effects and produced tumor cytotoxicity, while reducing the cellular features of the cancer (hyperproliferation, growth, and metastasis). DISCUSSION This study evaluated the various selenium compounds tested, the cell lines and model organisms used, the assays performed, and the cellular pathways affected. CONCLUSION Examining the possible benefits of selenium in TNBC treatment highlights the need for more studies to confirm selenium compounds as viable co-therapeutic agents.
Collapse
Affiliation(s)
- Despoina Sidira
- Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Angeliki Siafaka
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimosthenis Chrysikos
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Dimitrios Filippou
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Pereira ME, Lima LS, Souza JV, de Souza da Costa N, da Silva JF, Guiloski IC, Irioda AC, Oliveira CS. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer's Disease. Biol Trace Elem Res 2024; 202:2954-2965. [PMID: 37803188 DOI: 10.1007/s12011-023-03893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.
Collapse
Affiliation(s)
- Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luiza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
9
|
Angulo-Elizari E, Raza A, Encío I, Sharma AK, Sanmartín C, Plano D. Seleno-Warfare against Cancer: Decoding Antitumor Activity of Novel Acylselenoureas and Se-Acylisoselenoureas. Pharmaceutics 2024; 16:272. [PMID: 38399326 PMCID: PMC10891803 DOI: 10.3390/pharmaceutics16020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, cancer remains a global health problem. Despite the existence of several treatments, including chemotherapy, immunotherapy, and radiation therapy, the survival rate for most cancer patients, particularly those with metastasis, remains unsatisfactory. Thus, there is a continuous need to develop novel, effective therapies. In this work, 22 novel molecules containing selenium are reported, including seven Se-acylisoselenoureas synthesized from aliphatic carbodiimides as well as acylselenoureas with the same carbo- and heterocycles and aliphatic amines. After an initial screening at two doses (50 and 10 µM) in MDA-MB-231 (breast), HTB-54 (lung), DU-145 (prostate), and HCT-116 (colon) tumor cell lines, the ten most active compounds were identified. Additionally, these ten hits were also submitted to the DTP program of the NCI to study their cytotoxicity in a panel of 60 cancer cell lines. Compound 4 was identified as the most potent antiproliferative compound. The results obtained showed that compound 4 presented IC50 values lower than 10 µM in the cancer cell lines, although it was not the most selective one. Furthermore, compound 4 was found to inhibit cell growth and cause cell death by inducing apoptosis partially via ROS production. Overall, our results suggest that compound 4 could be a potential chemotherapeutic drug for different types of cancer.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (A.R.); (A.K.S.)
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (A.R.); (A.K.S.)
| | - Carmen Sanmartín
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| |
Collapse
|
10
|
Fermiano MH, das Neves AR, da Silva F, Barros MSA, Vieira CB, Stein AL, Frizon TEA, Braga AL, de Arruda CCP, Parisotto EB, Saba S, Rafique J, Riul TB. Selenium-Containing (Hetero)Aryl Hybrids as Potential Antileishmanial Drug Candidates: In Vitro Screening against L. amazonensis. Biomedicines 2024; 12:213. [PMID: 38255318 PMCID: PMC10812941 DOI: 10.3390/biomedicines12010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Leishmaniasis remains a significant global health concern, with current treatments relying on outdated drugs associated with high toxicity, lengthy administration, elevated costs, and drug resistance. Consequently, the urgent need for safer and more effective therapeutic options in leishmaniasis treatment persists. Previous research has highlighted selenium compounds as promising candidates for innovative leishmaniasis therapy. In light of this, a library of 10 selenium-containing diverse compounds was designed and evaluated in this study. These compounds included selenium-substituted indole, coumarin, chromone, oxadiazole, imidazo[1,2-a]pyridine, Imidazo[2,1-b]thiazole, and oxazole, among others. These compounds were screened against Leishmania amazonensis promastigotes and intracellular amastigotes, and their cytotoxicity was assessed in peritoneal macrophages, NIH/3T3, and J774A.1 cells. Among the tested compounds, MRK-106 and MRK-108 displayed the highest potency against L. amazonensis promastigotes with reduced cytotoxicity. Notably, MRK-106 and MRK-108 exhibited IC50 values of 3.97 µM and 4.23 µM, respectively, and most of the tested compounds showed low cytotoxicity in host cells (CC50 > 200 µM). Also, compounds MRK-107 and MRK-113 showed activity against intracellular amastigotes (IC50 18.31 and 15.93 µM and SI 12.55 and 10.92, respectively). In conclusion, the identified selenium-containing compounds hold potential structures as antileishmanial drug candidates to be further explored in subsequent studies. These findings represent a significant step toward the development of safer and more effective therapies for leishmaniasis, addressing the pressing need for novel and improved treatments.
Collapse
Affiliation(s)
- Maria Helena Fermiano
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil (A.R.d.N.)
| | - Amarith Rodrigues das Neves
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil (A.R.d.N.)
| | - Fernanda da Silva
- Instituto de Biociências (INBIO), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | | | - Camila Barbosa Vieira
- LABSO, Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiânia 74690-900, GO, Brazil (S.S.)
| | - André L. Stein
- Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil
| | - Tiago Elias Allievi Frizon
- Departamento de Energia e Sustentabilidade, Universidade Federal de Santa Catarina (UFSC), Campus Araranguá, Araranguá 88905-120, SC, Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil
| | - Carla Cardozo Pinto de Arruda
- Instituto de Biociências (INBIO), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil (A.R.d.N.)
| | - Sumbal Saba
- LABSO, Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiânia 74690-900, GO, Brazil (S.S.)
| | - Jamal Rafique
- Instituto de Química (INQUI), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79074-460, MS, Brazil;
- LABSO, Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiânia 74690-900, GO, Brazil (S.S.)
| | - Thalita Bachelli Riul
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil (A.R.d.N.)
| |
Collapse
|