1
|
Zhang R, Du H, Liu Z, Lei Y, Hu H, Zheng J, Yang P, Zhao D. Macrophage Notch1 Participates in LPS-Induced Acute Lung Injury via Regulating CCR5 Expression in Mice. FRONT BIOSCI-LANDMRK 2025; 30:37430. [PMID: 40302346 DOI: 10.31083/fbl37430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND As pivotal immunoregulatory sentinels in pulmonary defense systems, alveolar macrophages (AMs) play dual roles in mediating inflammatory responses and tissue repair processes during various phases of inflammatory cascades. The present investigation focuses on elucidating the regulatory influence of Notch pathway activation within AM populations on the pathophysiological mechanisms underlying acute lung injury (ALI) development. METHODS To investigate the regulatory roles of Notch intracellular domain (NICD) and C-C chemokine receptor type 5 (CCR5) in pulmonary inflammation, an ALI model was established through lipopolysaccharide (LPS) administration. Complementary studies used macrophage-specific Notch1 knockout mice and immortalized bone marrow-derived macrophages (iBMDMs). Molecular profiling of CCR5 and inflammatory mediators was performed through real-time quantitative reverse transcription PCR (qRT-PCR) and immunofluorescence staining. Functional assessments of macrophage migration were carried out using scratch wound healing assays and transwell migration assays. RESULTS In the LPS-induced ALI model, pulmonary tissues exhibited elevated expression of both NICD and CCR5. Conversely, Notch1 knockout mice attenuated CCR5 expression, reduced macrophage infiltration and downregulated transcription of pro-inflammatory mediators compared to wild-type controls (p < 0.05). Lung injury was milder in the Notch1-deficient mice model compared to wild mice (p < 0.05). In vitro experiments demonstrated that inhibiting the Notch pathway in macrophages reduced CCR5 expression and attenuated CCL5-induced macrophage migration. CONCLUSION Notch signaling regulates macrophage infiltration and the inflammatory response by modulating CCR5 expression in ALI induced by LPS.
Collapse
Affiliation(s)
- Ruiyu Zhang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Hui Du
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Huizhi Hu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Junwen Zheng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Pu Yang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
- Children's Digital Health and Data Center of Wuhan University, 430071 Wuhan, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
- Children's Digital Health and Data Center of Wuhan University, 430071 Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhang L, Luo X, Wu D, Zhou Q, Qiu J, Yan M, Wang Y. CD40 promotes AML survival via non-canonical NF-κB signaling and aberrant lipid metabolism. Int Immunopharmacol 2025; 156:114665. [PMID: 40252467 DOI: 10.1016/j.intimp.2025.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Despite the identification of several pathogenic drivers, the molecular mechanisms underlying the development of acute myeloid leukemia (AML) remain largely unknown. Therefore, we sought to explore the key genes associated with leukemia and identified cluster of differentiation 40 (CD40) as a key mediator linked to the incidence and progression of AML. Higher levels of CD40 were detected in patients with AML compared to healthy donors. Moreover, elevated CD40 expression was associated with lower overall survival rates. Furthermore, anti-CD40 antibody significantly induced apoptosis and enhanced drug sensitivity in human AML cell lines. Conversely, ex vivo treatment of primary AML samples with a CD40 agonist significantly decreased cell apoptosis and drug sensitivity. In Kasumi-1 AML cells, CD40 knockout (KO) significantly impaired the engraftment ability of leukemia cells and reduced the leukemia burden in NSG mice compared to wild-type mice. RNA sequencing showed that differentially expressed genes were significantly enriched in the nuclear factor-kB (NF-kB) signaling pathway in CD40-KO cells, which was confirmed through Western blotting. Untargeted metabolomic analysis revealed 179 metabolites with differential expression between WT and CD40 KO cells. Subsequent analysis revealed significant changes in the main metabolic pathways, particularly the biosynthesis of unsaturated fatty acids and lipid metabolism. A targeted metabolomics study of fatty acid metabolism demonstrated that cis-5, 8, 11, 14, 17-eicosapentaenoic acid (EPA) was markedly downregulated in CD40-KO cells compared to wild-type cells. Remarkably, EPA reversed the apoptosis and cell cycle arrest induced by CD40 deletion, simultaneously reducing the drug sensitivity of CD40-KO cells. Together, our study highlights the potential of CD40 as a target in the treatment of AML.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Dongyan Wu
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qiang Zhou
- The People's Hospital of Le'an County, Fuzhou, China
| | - Jiachun Qiu
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Lai S, Wu X, Liu Y, Liu B, Wu H, Ma K. Interaction between Th17 and central nervous system in multiple sclerosis. Brain Behav Immun Health 2025; 43:100928. [PMID: 39845807 PMCID: PMC11751430 DOI: 10.1016/j.bbih.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Shixin Lai
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaomin Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yue Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
4
|
Xu Z, Wang H. Targeting the chemokines in acute graft-versus-host disease. Front Immunol 2025; 15:1525244. [PMID: 39840040 PMCID: PMC11747407 DOI: 10.3389/fimmu.2024.1525244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) constitutes a critical therapeutic approach for patients with malignant hematological disorders. Nevertheless, acute graft-versus-host disease (GVHD), one of the most prevalent complications associated with HSCT, remains a leading contributor to non-relapse mortality. In recent years, there has been an increasing focus on the interplay between chemokines and their receptors in the context of acute GVHD. Chemokines exert substantial effects across various pathological conditions, including autoimmune diseases, inflammatory processes, tumorigenesis, and metastatic dissemination. In this review, we aim to elucidate the role of chemokines in the pathogenesis of acute GVHD and further understand their potential as diagnostic biomarkers. We also present both preclinical and clinical insights into the application of chemokines in preventing and treating acute GVHD. The objective of this review is to offer novel perspectives on the clinical diagnosis and management strategies for acute GVHD.
Collapse
Affiliation(s)
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Nguyen TL, Phan NM, Kim J. Administration of ROS-Scavenging Cerium Oxide Nanoparticles Simply Mixed with Autoantigenic Peptides Induce Antigen-Specific Immune Tolerance against Autoimmune Encephalomyelitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33106-33120. [PMID: 38906850 DOI: 10.1021/acsami.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Lin Y, Liu S, Sun Y, Chen C, Yang S, Pei G, Lin M, Yu J, Liu X, Wang H, Long J, Yan Q, Liang J, Yao J, Yi F, Meng L, Tan Y, Chen N, Yang Y, Ai Q. CCR5 and inflammatory storm. Ageing Res Rev 2024; 96:102286. [PMID: 38561044 DOI: 10.1016/j.arr.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.
Collapse
Affiliation(s)
- Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
7
|
Hamid R, Alaziz M, Mahal AS, Ashton AW, Halama N, Jaeger D, Jiao X, Pestell RG. The Role and Therapeutic Targeting of CCR5 in Breast Cancer. Cells 2023; 12:2237. [PMID: 37759462 PMCID: PMC10526962 DOI: 10.3390/cells12182237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.
Collapse
Affiliation(s)
- Rasha Hamid
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | - Mustafa Alaziz
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | | | - Anthony W. Ashton
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Lankenau Institute for Medical Research Philadelphia, Wynnewood, PA 19096, USA
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Clinical Cooperation Unit Applied Tumor-Immunity, 69120 Heidelberg, Germany
| | - Xuanmao Jiao
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Richard G. Pestell
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|