1
|
Gao Y, Koyun AH, Roessner V, Stock AK, Mückschel M, Colzato L, Hommel B, Beste C. Transcranial direct current stimulation and methylphenidate interact to increase cognitive persistence as a core component of metacontrol: Evidence from aperiodic activity analyses. Brain Stimul 2025; 18:720-729. [PMID: 40180219 DOI: 10.1016/j.brs.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Metacontrol is the ability to optimize the balance between cognitive persistence and flexibility. Recent research points to aperiodic EEG activity as a neurophysiological marker for metacontrol and its modulations. However, the causal link between metacontrol and aperiodic activity is still unclear. OBJECTIVE We provide mechanistic insights into the neurobiological foundations of metacontrol and the means to enhance it. We evaluated the interplay of anodal transcranial direct current stimulation (atDCS) and Methylphenidate (MPH), both of which are known to alter cortical noise, a factor that can be measured by aperiodic exponents derived from EEG data. METHODS We examined the impact of right inferior frontal (midpoint between electrodes FC4 and F8) 20 min offline atDCS at 2-mA and MPH administration, both separately and combined, on aperiodic EEG activity while healthy adult participants (N = 98) performed a Go/NoGo task. We used the FOOOF (fitting oscillations & one over f) algorithm to examine aperiodic activity. RESULTS We obtained an interaction between atDCS stimulation and MPH administration, indicating that atDCS is effective in reducing aperiodic neural activity (i.e., increased aperiodic exponents) when being combined with MPH administration. CONCLUSION Aperiodic neural activity can be modulated through pharmacology-tuned atDCS. atDCS and MPH rely on overlapping neurobiological mechanisms. Metacontrol depending on aperiodic neural activity can be modulated through combined atDCS-MPH stimulation. Hence, atDCS and MPH are suitable tools to achieve an exogenous modulation of metacontrol bias and aperiodic exponents are indices to demonstrate the effectiveness of such tools.
Collapse
Affiliation(s)
- Yang Gao
- School of Psychology, Shandong Normal University, Jinan, China
| | - Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Lorenza Colzato
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Christian Beste
- School of Psychology, Shandong Normal University, Jinan, China; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
2
|
Glica A, Wasilewska K, Jurkowska J, Żygierewicz J, Kossowski B, Jednoróg K. Reevaluating the neural noise in dyslexia using biomarkers from electroencephalography and high-resolution magnetic resonance spectroscopy. eLife 2025; 13:RP99920. [PMID: 40029268 DOI: 10.7554/elife.99920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agnieszka Glica
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Wasilewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Melcher D, Alaberkyan A, Anastasaki C, Liu X, Deodato M, Marsicano G, Almeida D. An early effect of the parafoveal preview on post-saccadic processing of English words. Atten Percept Psychophys 2025; 87:94-119. [PMID: 38956003 PMCID: PMC11845564 DOI: 10.3758/s13414-024-02916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
A key aspect of efficient visual processing is to use current and previous information to make predictions about what we will see next. In natural viewing, and when looking at words, there is typically an indication of forthcoming visual information from extrafoveal areas of the visual field before we make an eye movement to an object or word of interest. This "preview effect" has been studied for many years in the word reading literature and, more recently, in object perception. Here, we integrated methods from word recognition and object perception to investigate the timing of the preview on neural measures of word recognition. Through a combined use of EEG and eye-tracking, a group of multilingual participants took part in a gaze-contingent, single-shot saccade experiment in which words appeared in their parafoveal visual field. In valid preview trials, the same word was presented during the preview and after the saccade, while in the invalid condition, the saccade target was a number string that turned into a word during the saccade. As hypothesized, the valid preview greatly reduced the fixation-related evoked response. Interestingly, multivariate decoding analyses revealed much earlier preview effects than previously reported for words, and individual decoding performance correlated with participant reading scores. These results demonstrate that a parafoveal preview can influence relatively early aspects of post-saccadic word processing and help to resolve some discrepancies between the word and object literatures.
Collapse
Affiliation(s)
- David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ani Alaberkyan
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Chrysi Anastasaki
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Xiaoyi Liu
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Psychology, Princeton University, Washington Rd, Princeton, NJ, 08540, USA
| | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Gianluca Marsicano
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47023, Cesena, Italy
| | - Diogo Almeida
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Santoni A, Di Dona G, Melcher D, Franchin L, Ronconi L. Atypical oscillatory and aperiodic signatures of visual sampling in developmental dyslexia. Neuroimage Clin 2024; 45:103720. [PMID: 39644559 PMCID: PMC11665574 DOI: 10.1016/j.nicl.2024.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Temporal processing deficits in Developmental Dyslexia (DD) have been documented extensively at the behavioral level, leading to the formulation of neural theories positing that such anomalies in parsing multisensory input rely on aberrant synchronization of neural oscillations or to an excessive level of neural noise. Despite reading being primarily supported by visual functions, experimental evidence supporting these theories remains scarce. Here, we tested 26 adults with DD (9 females) and 31 neurotypical controls (16 females) with a temporal segregation/integration task that required participants to either integrate or segregate two rapidly presented displays while their EEG activity was recorded. We confirmed a temporal sampling deficit in DD, which specifically affected the rapid segregation of visual input. While the ongoing alpha frequency and the excitation/inhibition (E/I) ratio (i.e., an index of neural noise quantified by the aperiodic exponent) were differently modulated based on task demands in typical readers, DD participants exhibited an impairment in alpha speed modulation and an altered E/I ratio that affected their rapid visual sampling. Nonetheless, an association between visual temporal sampling accuracy and both alpha frequency and the E/I ratio measured at rest were evident in the DD group, further confirming an anomalous interplay between alpha synchronization, the E/I ratio and active visual sampling. These results provide evidence that both trait- and state-like differences in alpha-band synchronization and neural noise levels coexist in the dyslexic brain and are synergistically responsible for cascade effects on visual sampling and reading.
Collapse
Affiliation(s)
- Alessia Santoni
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giuseppe Di Dona
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates; Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Laura Franchin
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy; Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
5
|
Diwoux A, Gabriel D, Bardel MH, Ben Khalifa Y, Billot PÉ. Neurophysiological approaches to exploring emotional responses to cosmetics: a systematic review of the literature. Front Hum Neurosci 2024; 18:1443001. [PMID: 39502789 PMCID: PMC11534817 DOI: 10.3389/fnhum.2024.1443001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This systematic review explores the use of neurophysiological measurements to study emotional responses to cosmetic products. The aim is to evaluate existing literature on these measurements in cosmetics, identify the main findings, highlight methodological challenges, and propose new guidelines for future research. Method A systematic search focusing on neurophysiological measures to determine emotions induced by different cosmetic products was carried out in accordance with PRISMA guidelines. Results A total of 33 articles identified with the EBSCO database met the inclusion criteria. In all, 10 different measurement tools were used in these articles to assess the emotional effects of cosmetic products. Discussion This review emphasizes the complexity of interactions between cosmetics and emotional responses. It underscores the importance of future research with a more holistic approach that couples several physiological measurements. Among them, electrophysiological brain activity shows potential for enhancing understanding of emotional responses related to cosmetic products. Frontal asymmetry, particularly in the alpha frequency band, was often use and frequently linked to positive emotional states, although conflicting evidence exists. Additionally, cardiac activity, specifically the LF/HF ratio, emerges as a promising marker for differentiating between different cosmetic products. However, methodological heterogeneity, present challenges for replicability, generalizability, and complicate data interpretation.
Collapse
Affiliation(s)
- Audrey Diwoux
- Beauty Research and Performance Department, CHANEL Parfums Beauté, Pantin, France
- Université de Franche-Comté, INSERM, UMR 1322 LINC, Besançon, France
| | - Damien Gabriel
- Université de Franche-Comté, INSERM, UMR 1322 LINC, Besançon, France
- Centre d'Investigation Clinique, Inserm, CIC 1431, CHU, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neuromodulation Neuraxess, Besançon, France
| | - Marie-Héloïse Bardel
- Beauty Research and Performance Department, CHANEL Parfums Beauté, Pantin, France
| | - Youcef Ben Khalifa
- Beauty Research and Performance Department, CHANEL Parfums Beauté, Pantin, France
| | - Pierre-Édouard Billot
- Université de Franche-Comté, INSERM, UMR 1322 LINC, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neuromodulation Neuraxess, Besançon, France
| |
Collapse
|
6
|
Yan J, Yu S, Mückschel M, Colzato L, Hommel B, Beste C. Aperiodic neural activity reflects metacontrol in task-switching. Sci Rep 2024; 14:24088. [PMID: 39406868 PMCID: PMC11480088 DOI: 10.1038/s41598-024-74867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
"Metacontrol" refers to the ability to find the right balance between more persistent and more flexible cognitive control styles, depending on task demands. Recent research on tasks involving response conflict regulation indicates a consistent link between aperiodic EEG activity and task conditions that demand a more or less persistent control style. In this study, we explored whether this connection between metacontrol and aperiodic activity also applies to cognitive flexibility. We examined EEG and behavioral data from two separate samples engaged in a task-switching paradigm, allowing for an internal replication of our findings. Both studies revealed that aperiodic activity significantly decreased during task switching compared to task repetition. Our results support the predictions of metacontrol theory but contradict those of traditional control theories which would have predicted the opposite pattern of results. We propose that aperiodic activity observed in EEG signals serves as a valid indicator of dynamic neuroplasticity in metacontrol, suggesting that truly adaptive metacontrol does not necessarily bias processing towards persistence in response to every control challenge, but chooses between persistence and flexibility biases depending on the nature of the challenge.
Collapse
Affiliation(s)
- Jimin Yan
- School of Psychology, Shandong Normal University, Jinan, 250061, China
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069, Dresden, Germany
| | - Lorenza Colzato
- School of Psychology, Shandong Normal University, Jinan, 250061, China.
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, 250061, China.
| | - Christian Beste
- School of Psychology, Shandong Normal University, Jinan, 250061, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
7
|
Deodato M, Melcher D. Aperiodic EEG Predicts Variability of Visual Temporal Processing. J Neurosci 2024; 44:e2308232024. [PMID: 39168653 PMCID: PMC11450528 DOI: 10.1523/jneurosci.2308-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024] Open
Abstract
The human brain exhibits both oscillatory and aperiodic, or 1/f, activity. Although a large body of research has focused on the relationship between brain rhythms and sensory processes, aperiodic activity has often been overlooked as functionally irrelevant. Prompted by recent findings linking aperiodic activity to the balance between neural excitation and inhibition, we investigated its effects on the temporal resolution of perception. We recorded electroencephalography (EEG) from participants (both sexes) during the resting state and a task in which they detected the presence of two flashes separated by variable interstimulus intervals. Two-flash discrimination accuracy typically follows a sigmoid function whose steepness reflects perceptual variability or inconsistent integration/segregation of the stimuli. We found that individual differences in the steepness of the psychometric function correlated with EEG aperiodic exponents over posterior scalp sites. In other words, participants with flatter EEG spectra (i.e., greater neural excitation) exhibited increased sensory noise, resulting in shallower psychometric curves. Our finding suggests that aperiodic EEG is linked to sensory integration processes usually attributed to the rhythmic inhibition of neural oscillations. Overall, this correspondence between aperiodic neural excitation and behavioral measures of sensory noise provides a more comprehensive explanation of the relationship between brain activity and sensory integration and represents an important extension to theories of how the brain samples sensory input over time.
Collapse
Affiliation(s)
- Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Marsicano G, Bertini C, Ronconi L. Decoding cognition in neurodevelopmental, psychiatric and neurological conditions with multivariate pattern analysis of EEG data. Neurosci Biobehav Rev 2024; 164:105795. [PMID: 38977116 DOI: 10.1016/j.neubiorev.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Multivariate pattern analysis (MVPA) of electroencephalographic (EEG) data represents a revolutionary approach to investigate how the brain encodes information. By considering complex interactions among spatio-temporal features at the individual level, MVPA overcomes the limitations of univariate techniques, which often fail to account for the significant inter- and intra-individual neural variability. This is particularly relevant when studying clinical populations, and therefore MVPA of EEG data has recently started to be employed as a tool to study cognition in brain disorders. Here, we review the insights offered by this methodology in the study of anomalous patterns of neural activity in conditions such as autism, ADHD, schizophrenia, dyslexia, neurological and neurodegenerative disorders, within different cognitive domains (perception, attention, memory, consciousness). Despite potential drawbacks that should be attentively addressed, these studies reveal a peculiar sensitivity of MVPA in unveiling dysfunctional and compensatory neurocognitive dynamics of information processing, which often remain blind to traditional univariate approaches. Such higher sensitivity in characterizing individual neurocognitive profiles can provide unique opportunities to optimise assessment and promote personalised interventions.
Collapse
Affiliation(s)
- Gianluca Marsicano
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna 40121, Italy; Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena 47023, Italy.
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna 40121, Italy; Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena 47023, Italy.
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Pi Y, Yan J, Pscherer C, Gao S, Mückschel M, Colzato L, Hommel B, Beste C. Interindividual aperiodic resting-state EEG activity predicts cognitive-control styles. Psychophysiology 2024; 61:e14576. [PMID: 38556626 DOI: 10.1111/psyp.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The ability to find the right balance between more persistent and more flexible cognitive-control styles is known as "metacontrol." Recent findings suggest a relevance of aperiodic EEG activity and task conditions that are likely to elicit a specific metacontrol style. Here we investigated whether individual differences in aperiodic EEG activity obtained off-task (during resting state) predict individual cognitive-control styles under task conditions that pose different demands on metacontrol. We analyzed EEG resting-state data, task-EEG, and behavioral outcomes from a sample of N = 65 healthy participants performing a Go/Nogo task. We examined aperiodic activity as indicator of "neural noise" in the EEG power spectrum, and participants were assigned to a high-noise or low-noise group according to a median split of the exponents obtained for resting state. We found that off-task aperiodic exponents predicted different cognitive-control styles in Go and Nogo conditions: Overall, aperiodic exponents were higher (i.e., noise was lower) in the low-noise group, who however showed no difference between Go and Nogo trials, whereas the high-noise group exhibited significant noise reduction in the more persistence-heavy Nogo condition. This suggests that trait-like biases determine the default cognitive-control style, which however can be overwritten or compensated for under challenging task demands. We suggest that aperiodic activity in EEG signals represents valid indicators of highly dynamic arbitration between metacontrol styles, representing the brain's capability to reorganize itself and adapt its neural activity patterns to changing environmental conditions.
Collapse
Affiliation(s)
- Yu Pi
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jimin Yan
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Shudan Gao
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Lorenza Colzato
- Department of Psychology, Shandong Normal University, Jinan, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Department of Psychology, Shandong Normal University, Jinan, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
10
|
Jia S, Liu D, Song W, Beste C, Colzato L, Hommel B. Tracing conflict-induced cognitive-control adjustments over time using aperiodic EEG activity. Cereb Cortex 2024; 34:bhae185. [PMID: 38771238 DOI: 10.1093/cercor/bhae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Cognitive-control theories assume that the experience of response conflict can trigger control adjustments. However, while some approaches focus on adjustments that impact the selection of the present response (in trial N), other approaches focus on adjustments in the next upcoming trial (N + 1). We aimed to trace control adjustments over time by quantifying cortical noise by means of the fitting oscillations and one over f algorithm, a measure of aperiodic activity. As predicted, conflict trials increased the aperiodic exponent in a large sample of 171 healthy adults, thus indicating noise reduction. While this adjustment was visible in trial N already, it did not affect response selection before the next trial. This suggests that control adjustments do not affect ongoing response-selection processes but prepare the system for tighter control in the next trial. We interpret the findings in terms of a conflict-induced switch from metacontrol flexibility to metacontrol persistence, accompanied or even implemented by a reduction of cortical noise.
Collapse
Affiliation(s)
- Shiwei Jia
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Dandan Liu
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Wenqi Song
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Christian Beste
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitaet Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Lorenza Colzato
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| |
Collapse
|
11
|
Di Dona G, Zamfira DA, Battista M, Battaglini L, Perani D, Ronconi L. The role of parietal beta-band activity in the resolution of visual crowding. Neuroimage 2024; 289:120550. [PMID: 38382861 DOI: 10.1016/j.neuroimage.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| | - Denisa Adina Zamfira
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Martina Battista
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza S. Francesco 19, 55100 Lucca LU, Italy
| | - Luca Battaglini
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova PD, Italy
| | - Daniela Perani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| |
Collapse
|
12
|
Theodoridou D, Tsiantis CO, Vlaikou AM, Chondrou V, Zakopoulou V, Christodoulides P, Oikonomou ED, Tzimourta KD, Kostoulas C, Tzallas AT, Tsamis KI, Peschos D, Sgourou A, Filiou MD, Syrrou M. Developmental Dyslexia: Insights from EEG-Based Findings and Molecular Signatures-A Pilot Study. Brain Sci 2024; 14:139. [PMID: 38391714 PMCID: PMC10887023 DOI: 10.3390/brainsci14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Developmental dyslexia (DD) is a learning disorder. Although risk genes have been identified, environmental factors, and particularly stress arising from constant difficulties, have been associated with the occurrence of DD by affecting brain plasticity and function, especially during critical neurodevelopmental stages. In this work, electroencephalogram (EEG) findings were coupled with the genetic and epigenetic molecular signatures of individuals with DD and matched controls. Specifically, we investigated the genetic and epigenetic correlates of key stress-associated genes (NR3C1, NR3C2, FKBP5, GILZ, SLC6A4) with psychological characteristics (depression, anxiety, and stress) often included in DD diagnostic criteria, as well as with brain EEG findings. We paired the observed brain rhythms with the expression levels of stress-related genes, investigated the epigenetic profile of the stress regulator glucocorticoid receptor (GR) and correlated such indices with demographic findings. This study presents a new interdisciplinary approach and findings that support the idea that stress, attributed to the demands of the school environment, may act as a contributing factor in the occurrence of the DD phenotype.
Collapse
Affiliation(s)
- Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christos-Orestis Tsiantis
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki Chondrou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Victoria Zakopoulou
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Pavlos Christodoulides
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Emmanouil D Oikonomou
- Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Katerina D Tzimourta
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros T Tzallas
- Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Konstantinos I Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Argyro Sgourou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Michaela D Filiou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
13
|
Di Dona G, Ronconi L. Beta oscillations in vision: a (preconscious) neural mechanism for the dorsal visual stream? Front Psychol 2023; 14:1296483. [PMID: 38155693 PMCID: PMC10753839 DOI: 10.3389/fpsyg.2023.1296483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Neural oscillations in alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are thought to reflect feedback/reentrant loops and large-scale cortical interactions. In the last decades a main effort has been made in linking perception with alpha-band oscillations, with converging evidence showing that alpha oscillations have a key role in the temporal and featural binding of visual input, configuring the alpha rhythm a key determinant of conscious visual experience. Less attention has been historically dedicated to link beta oscillations and visual processing. Nonetheless, increasing studies report that task conditions that require to segregate/integrate stimuli in space, to disentangle local/global shapes, to spatially reorganize visual inputs, and to achieve motion perception or form-motion integration, rely on the activity of beta oscillations, with a main hub in parietal areas. In the present review, we summarize the evidence linking oscillations within the beta band and visual perception. We propose that beta oscillations represent a neural code that supports the functionality of the magnocellular-dorsal (M-D) visual pathway, serving as a fast primary neural code to exert top-down influences on the slower parvocellular-ventral visual pathway activity. Such M-D-related beta activity is proposed to act mainly pre-consciously, providing the spatial coordinates of vision and guiding the conscious extraction of objects identity that are achieved with slower alpha rhythms in ventral areas. Finally, within this new theoretical framework, we discuss the potential role of M-D-related beta oscillations in visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|