1
|
Zheng T, Huang KY, Tang XD, Wang FY, Lv L. Endoplasmic reticulum stress in gut inflammation: Implications for ulcerative colitis and Crohn's disease. World J Gastroenterol 2025; 31:104671. [PMID: 40248056 PMCID: PMC12001174 DOI: 10.3748/wjg.v31.i13.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Eukaryotic cells contain the endoplasmic reticulum (ER), a prevalent and intricate membranous structural system. During the development of inflammatory bowel disease (IBD), the stress on the ER and the start of the unfolded protein response are very important. Some chemicals, including 4μ8C, small molecule agonists of X-box binding protein 1, and ISRIB, work on the inositol-requiring enzyme 1, turn on transcription factor 6, and activate protein kinase RNA-like ER kinase pathways. This may help ease the symptoms of IBD. Researchers investigating the gut microbiota have discovered a correlation between ER stress and it. This suggests that changing the gut microbiota could help make new medicines for IBD. This study looks at how ER stress works and how it contributes to the emergence of IBD. It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.
Collapse
Affiliation(s)
- Ting Zheng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Kai-Yue Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Kittle WM, Reeves MA, Fulkerson AE, Hamorsky KT, Morris DA, Kitterman KT, Merchant ML, Matoba N. Preclinical Long-Term Stability and Forced Degradation Assessment of EPICERTIN, a Mucosal Healing Biotherapeutic for Inflammatory Bowel Disease. Pharmaceutics 2025; 17:259. [PMID: 40006626 PMCID: PMC11859197 DOI: 10.3390/pharmaceutics17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: EPICERTIN, a biotherapeutic candidate for mucosal healing in inflammatory bowel disease (IBD) and other mucosal disorders, was subjected to an extensive long-term stability program to evaluate its molecular stability and physicochemical properties. Additionally, a forced degradation assessment was conducted to identify EPICERTIN's degradation products under various conditions, including thermal stress, pH variations, agitation, and oxidation. Methods: The stability of EPICERTIN drug substance (DS), formulated in phosphate-buffered saline (PBS) at 1 mg/mL and stored at 5 °C and 25 °C/60% relative humidity (RH), was monitored over a 2-year period, referencing relevant regulatory guidelines. Evaluations of EPICERTIN DS over the 24-month period included assessment of purity by SDS-PAGE and size exclusion high performance liquid chromatography (SEC-HPLC), identity by electrospray ionization mass spectrometry (ESI-MS) intact mass analysis and Western blotting, and potency by GM1-binding KDEL-detection ELISA (GM1/KDEL ELISA). The forced degradation patterns were analyzed by assessing purity (using SEC-HPLC and SDS-PAGE), potency (via GM1/KDEL ELISA), and intact mass (via ESI-MS). Results: The results overall support that EPICERTIN DS remains stable for 2 years under the tested conditions. The forced degradation assessment effectively identified degradation products, particularly under conditions of high temperatures (above 40 °C for 24 h), low pH values (pH 1 and 4), and oxidation upon exposure to 2% H2O2. Conclusions: These findings highlight EPICERTIN's robust long-term stability in PBS formulation, reinforcing its potential as a viable drug candidate for the treatment of IBD.
Collapse
Affiliation(s)
- Wendy M. Kittle
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
| | - Micaela A. Reeves
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
| | - Ashley E. Fulkerson
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| | - Krystal T. Hamorsky
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - David A. Morris
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| | - Kathleen T. Kitterman
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Core and Clinical Proteomics Laboratories, University of Louisville, Louisville, KY 40202, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| |
Collapse
|
3
|
Gentili M, Sabbatini S, Nunzi E, Lusenti E, Cari L, Mencacci A, Ballet N, Migliorati G, Riccardi C, Ronchetti S, Monari C. Glucocorticoid-Induced Leucine Zipper Protein and Yeast-Extracted Compound Alleviate Colitis and Reduce Fungal Dysbiosis. Biomolecules 2024; 14:1321. [PMID: 39456254 PMCID: PMC11506796 DOI: 10.3390/biom14101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)", known for its protective role in gut mucosa, and a yeast extract (Py) with prebiotic properties, either alone or combined, in DSS-induced colitis. Both treatments alleviated symptoms via overlapping or distinct mechanisms. In particular, they reduced the transcription levels of pro-inflammatory cytokines IL-1β and TNF-α, as well as the expression of the tight junction protein Claudin-2. Additionally, GILZp increased MUC2 transcription, while Py reduced IL-12p40 and IL-6 levels. Notably, both treatments were effective in restoring the intestinal burden of clinically important Candida and related species. Intestinal mycobiome analysis revealed that they were able to reduce colitis-associated fungal dysbiosis, and this effect was mainly the result of a decreased abundance of the Meyerozima genus, which was dominant in colitic mice. Overall, our results suggest that combined treatment regimens with GILZp and Py could represent a new strategy for the treatment of IBD by targeting multiple mechanisms, including the fungal dysbiosis.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Eleonora Lusenti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Luigi Cari
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Antonella Mencacci
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Nathalie Ballet
- Lesaffre Institute of Science & Technology, Lesaffre International, 59700 Marcq-en-Baroeul, France;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| |
Collapse
|
4
|
Wang L, Zhang D, Jiang B, Ding H, Feng S, Zhao C, Wang X, Wu J. 4-Phenylbutyric Acid Attenuates Soybean Glycinin/β-Conglycinin-Induced IPEC-J2 Cells Apoptosis by Regulating the Mitochondria-Associated Endoplasmic Reticulum Membrane and NLRP-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5926-5934. [PMID: 38457471 DOI: 10.1021/acs.jafc.3c09630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Glycinin (11S) and β-conglycinin (7S) from soybean (glycine max) cause diarrhea and intestinal barrier damage in young animals. Understanding the mechanisms underlying the damage caused by 7S and 11S, it is vital to develop strategies to eliminate allergenicity. Consequently, we investigated 7S/11S-mediated apoptosis in porcine intestinal epithelial (IPEC-J2) cells. IPEC-J2 cells suffered endoplasmic reticulum stress (ERS) in response to 7S and 11S, activating protein kinase RNA-like ER kinase, activating transcription factor 6, C/EBP homologous protein, and inositol-requiring enzyme 1 alpha. 4-Phenylbutyric acid (4-PBA) treatment alleviated ERS; reduced the NLR family pyrin domain containing 3, interleukin-1β, and interleukin-18 levels; inhibited apoptosis; increased mitofusin 2 expression; and mitigated Ca2+ overload and mitochondria-associated ER membrane (MAM) dysfunction, thereby ameliorating IPEC-J2 injury. We demonstrated the pivotal role of ERS in MAM dysfunction and 7S- and 11S-mediated apoptosis, providing insights into 7S- and 11S-mediated intestinal barrier injury prevention and treatment.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Benzheng Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| |
Collapse
|
5
|
Natrus L, Lisakovska O, Smirnov A, Osadchuk Y, Savosko S, Klys Y. Could the Propionic Acid Treatment in Combination with Metformin be Safe for the Small Intestine of Diabetic Rats? Endocr Metab Immune Disord Drug Targets 2024; 24:1335-1345. [PMID: 38265384 DOI: 10.2174/0118715303273125231121062111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Effects of propionic acid (PA) on the cellular and molecular processes in the small intestine under type 2 diabetes mellitus (T2DM)-induced endoplasmic reticulum (ER) stress remain incompletely studied. OBJECTIVES The aim of the study was to assess the state of unfolded protein response (UPR) system in the small intestine of diabetic rats and to explore PA's influence on metformin treatment. METHODS Male Wistar rats were divided into 1) control and 2) T2DM groups, and groups receiving (14 days, orally) 3) metformin (60 mg/kg), 4) PA (60 mg/kg), and 5) PA+metformin. Western blotting, RT-PCR, and transmission electron microscopy were performed. RESULTS We found that T2DM induced elevation of ER intermembrane space and UPR overactivation based on increased GRP78, ATF6 and PERK levels in small intestine. Metformin treatment led to a further UPR activation. PA supplementation partially restored enterocytes functioning via normalization of ATF6 and PERK content, while IRE1 level reached the maximum value, compared to all groups. The most pronounced effect of adaptation to the T2DMinduced ER stress was observed after combined metformin and PA action. In particular, decreased ER intermembrane space in enterocytes was detected compared to separate metformin and PA administration, which was accompanied by restored GRP78, PERK and IRE1 levels. CONCLUSION Our study proves the safety of additional therapy with propionic acid in combination with metformin for the functional state of small intestine. Due to its ability to modulate UPR signaling, PA may be considered a safe and perspective candidate for supportive therapy in T2DM, especially for neuroprotection.
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomoletz National Medical University, Kyiv 03115, Ukraine
| | - Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv 01054, Ukraine
| | - Anton Smirnov
- Department of Socio-Humanitarian and Biomedical Sciences, Kharkiv Institute of Medicine and Biomedical Sciences, Kharkiv 61002, Ukraine
| | - Yuliia Osadchuk
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomoletz National Medical University, Kyiv 03115, Ukraine
| | - Serhyi Savosko
- Department of Histology and Embryology, Bogomoletz National Medical University, Kyiv 03115, Ukraine
| | - Yuliia Klys
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomoletz National Medical University, Kyiv 03115, Ukraine
| |
Collapse
|